
SOFTWARE VULNERABILITIES: LIFESPANS, METRICS, AND CASE STUDY

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Jason L. Wright

May 2014

Wednesday 16th April, 2014 13:42

Major Professor: Milos Manic, Ph.D.

ii

AUTHORIZATION TO SUBMIT THESIS

This thesis of Jason L. Wright, submitted for the degree of Master of Science with a

major in Computer Science and titled “Software Vulnerabilities: Lifespans, Metrics, and

Case Study,” has been reviewed in final form. Permission, as indicated by the signatures

and dates given below, is now granted to submit final copies to the College of Graduate

Studies for approval.

Major Professor Date
Milos Manic, Ph.D.

Committee
Members Date

Miles McQueen, M.S.

Date
George Dinolt, Ph.D.

Department
Administrator Date

Gregory Donohoe, Ph.D.
Discipline’s
College Dean Date

Larry Stauffer, Ph.D.

Final Approval and Acceptance by the College of Graduate Studies

Date
Jie Chen, PhD

iii

ABSTRACT

It is difficult for end-users to judge the risk posed by software security vulnerabilities.

This thesis examines three aspects of the software security vulnerability ecosystem to

determine if commonly used metrics are based on sound engineering principals.

First, the decision by several security research firms to decrease the grace period

before publicly releasing vulnerability details was examined. No evidence was found

suggest that periods less than 6 months are effective.

Second, two new metrics are presented which are more easily computed, repeatable,

and verifiable than previous metrics. Both metrics provide the ability to compare software

packages based on number of vulnerabilities and vendor response time.

Third, metrics based strictly on known vulnerabilities are brought into question.

The number of bugs which represent vulnerabilities is estimated for a particular package

and the estimated number of resulting vulnerabilities is found to be far greater than the

currently known vulnerabilities.

iv

ACKNOWLEDGMENTS

This thesis would would not have been possible without the help of my advisors, Dr.

Milos Manic and Miles McQueen. I would also like to thank Dr. George Dinolt for being

a valuable addition to my committee at the last minute, Debbie McQueen in particular

for gathering the ZDI and iDefense datasets in Chapter 3, Lawrence Wellman for his

analysis help in Chapter 4, Jason Larsen for his help in turning bugs to vulnerabilities in

Chapter 5, and Cindy Gentillon for helping with some of the thornier bits of the statistics.

On a personal note, thesis would not have happened without the support of my

loving wife, Virginia Wright, and two wonderful daughters, Elizabeth and Phoebe.

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Software Bugs and Vulnerabilities . 3

2.2 Vulnerability Stakeholders . 5

2.3 Software Vulnerability Disclosure . 8

2.4 Related Work . 9

3 Justification of Vulnerability Deadlines 13

3.1 Introduction . 13

3.2 Overview of Vulnerability Disclosure 16

3.3 Grace Periods Compared to Vulnerability Lifespans 17

3.4 Did Vendors Speed Up Their Patch Creation 19

3.5 Conclusion . 25

4 Analysis of Two End-User Vulnerability Metrics 26

4.1 Introduction . 26

4.2 Two End-User Exposure Metrics . 28

4.3 Metrics Case Study . 30

4.4 Discussion . 43

4.5 Conclusion . 48

vi

5 Estimating Software Vulnerabilities 52

5.1 Introduction . 52

5.2 Hidden Impact Bugs . 53

5.3 Experimental Goals and Setup . 58

5.4 Experimental Results . 69

5.5 Discussion . 72

5.6 Conclusion . 78

6 Conclusion . 80

REFERENCES . 81

APPENDIX

A Identifiers of Sampled Bugs for Each Scoring Group 88

B Published Works . 92

C Copyright Information . 99

1

CHAPTER 1

Introduction

The complexity of computing systems is ever increasing, and with each passing day

it becomes harder for end-users to judge the risk posed by vulnerabilities in software. The

impacts of exploitation of modern software system vulnerabilities include simple denial of

service attacks, identity theft or destruction of physical devices. Denial of service attacks

are temporary in nature with no long term impact once resolved, however, recovering

from identity theft is difficult for the end user. The cost of damage to physical devices

can be millions of dollars.

The Stuxnet malware is an example of the malware that was specifically designed to

target critical infrastructure components and cause physical harm to attached devices. It

is speculated that the Stuxnet malware set the Iranian nuclear program back years [1, 2].

One of the most important aspects of Stuxnet is that it exploited several previously

unknown software vulnerabilities, and there is no reason to believe that other critical

infrastructure systems are immune to similar attacks.

Stephan Frei, et al. describe the “security ecosystem” as being composed of “a wide

variety of actors and processes” which effect the “security of information technology and

computer networks” [3]. The subset of the security ecosystem involving vulnerabilities

introduced during the development of software will be referred to as the “software vul-

nerability ecosystem” or more succinctly “vulnerability ecosystem.”

This thesis examines several under-studied aspects of the software vulnerability

ecosystem to determine if currently used decisions and metrics are based on sound en-

gineering principals. To accomplish this, several experiments were conducted and the

results are accumulated here.

The rest of this thesis is organized as follows:

Chapter 2 provides background information. The various actors and processes in

the software vulnerability ecosystem are defined. Related work of general value as well

2

as analysis techniques are also discussed.

Chapters 3–5 are case studies which examine aspects of the software vulnerability

ecosystem. Each chapter provides unique insights into the current state of software

security.

Chapter 3 analyzes the impact of a change in the grace period offered by vulnerability

research organizations on vendor behavior. It has been supposed that shorter grace

periods force vendors to release patches more quickly. This chapter examines the practical

effects of changes in grace period on patch creation and demonstrates that the above

supposition appears to be correct, within limits.

Chapter 4 defines two software vulnerability metrics: Median Active Vulnerabilities

(MAV) and Vulnerability Free Days (VFD) capture some of the behavior vulnerability

researchers reporting vulnerabilities and the associated vendor response. Previous metrics

did not illuminate the process of vulnerability patch creation and allow for comparison

across vendors and products.

Chapter 5 introduces the concept of hidden impact bugs. These vulnerabilities are

ones which are first reported as bugs, but their security impact is revealed some time

after being reported and fixed as a bug. The bug database for an open source product is

then analyzed to identify bugs likely to be vulnerabilities and then try to turn the iden-

tified bugs into vulnerabilities. The primary goal of this study was to determine whether

statistics based on the known vulnerabilities in the National Vulnerability Database or

other public repositories are on a sound foundation. If the number of known vulner-

abilities is far less than the number of unknown vulnerabilities, it calls into question

whether comparisons between products can be made using statistics based on known

vulnerabilities.

Finally, Chapter 6 concludes the thesis and provides avenues for future work.

3

CHAPTER 2

Background

Software vulnerabilities have been around as long as software itself, but they have

gained an elevated status particularly over the past 20 years with the growing inter-

connectedness of computers and the amount of sensitive data stored on them. For this

research:

a software vulnerability is an instance of [a mistake] in the specification, de-
velopment, or configuration of software such that its execution can violate
the [explicit or implicit] security policy.

This definition comes originally from Ivan Krsul [4] and later modified by Andy Oz-

ment [5], who added the parenthetical modifiers.

The presence of mistakes that constitute vulnerabilities is primarily the result of

the human processes by which software is created. The study of software flaws falls into

the much larger field of software engineering or even more broadly into engineering as a

whole. However, this thesis is concerned with the flaws that can lead to compromise of the

security of a software system. In particular, the research case studies that constitute this

thesis provide insights into estimating how many software flaws are in fact vulnerabilities.

2.1 Software Bugs and Vulnerabilities

This thesis is concerned with software “bugs” that have a security impact. A “bug”

is an instance of a mistake in the specification, development, or configuration of software

such that its execution produces an incorrect result or causes the software to behave

in an unintended manner. The key difference between a software bug and a software

vulnerability is whether the “[explicit or implicit] security policy” of the program is

violated.

By way of example, a computer program which computes: 2 + 2 = 5 obviously has a

bug; whether this bug is a vulnerability depends on the context of the calculation within

the program. In fact, one class of vulnerability, integer overflows, takes advantage of this

4

type of miscalculation. In an integer overflow, a mathematical operation is applied to

two numbers and the result exceeds the maximum representable integer. By carefully

controlling the inputs, attackers may be able to cause the execution arbitrary code in a

vulnerable program.

During the development of products such as the Linux kernel and the MySQL

database, periodic releases are made and then the developers split into branches: one

set of developers maintains the stable code base producing patches in response to user

and internal bug reports, and the other set of developers concentrate on major new

functionality which will then become the next release.

As bugs are reported, they are triaged; some reports are erroneous, some reports are

requests for additional functionality, and some reports are software flaws. Within the set

of bugs reports that are flaws, a subset of those are security vulnerabilities.

There is a special class of bugs-turned-vulnerabilities that are most interesting to

this work. These are bugs that are only discovered to be vulnerabilities substantially

after they are patches are made available. The first authors to study these bugs were

Arnold, et al. who examined these so called hidden impact vulnerabilities in the Linux

kernel over a 3 year period [6]. They found that there were a significant quantity of

hidden impact vulnerabilities bugs and that third party vendors such as RedHat took

longer to incorporate and distribute non-security related patches to their users than those

identified as vulnerabilities when they were reported. The conclusion was that the quicker

the status of vulnerability was assigned to a bug, the quicker a patch is supplied, but

significant vulnerabilities would fail to be incorporated with this policy. To put a more

fine point on the terminology, this thesis will refer to bugs in this category as “hidden

impact bugs” since they have already been identified as bugs and their true impact is as

yet unknown at the time a patch is created.

5

2.2 Vulnerability Stakeholders

It is important to consider the various stakeholders in software vulnerabilities be-

cause each stakeholder observes different effects as vulnerabilities are discovered, re-

ported, and then mitigated. This section discusses each stakeholder in the process.

There are four primary stakeholders in the vulnerability disclosure process:

• vendors who produce software products,

• vulnerability researchers: individuals or firms, who actively search for vulnerabili-

ties or buy them, and then report the vulnerability to the vendor,

• end-users: enterprises or individuals, who are confronted with the potential for loss

from vulnerabilities.

• vulnerability repositories: who collect and disseminate the data required for accu-

rate calculation of metrics.

Each of these stakeholders will be discussed in the following subsections.

2.2.1 Software vendors

Software products have vulnerabilities. The absolute number of vulnerabilities

within any given software product is currently not measurable with any degree of confi-

dence [7, 8]. What can be determined, and what software vendors must confront, is the

number of vulnerabilities being reported and how long it takes to produce a patch. The

length of time it takes to produce a patch is directly under the control of the vendor and

can be directly influenced by the quality and quantity of resources devoted to the task.

It is a business decision, and each vendor (perhaps each vendor’s product line) has their

own unique costs and benefits to consider.

The number of vulnerabilities being reported for the product is, at best only indi-

rectly influenced by the vendor. The vendor can adopt some form of more secure software

6

development process such as Microsoft’s Secure Development Life Cycle [9], which in prin-

ciple would reduce the number of vulnerabilities which would have otherwise occurred.

But the vendor can control neither the level of attention of nor the tools available to vul-

nerability researchers. As the quantity and quality of researchers looking at the deployed

product increases, we would expect the number of vulnerabilities reported to also in-

crease. As the tools available to researchers for aiding the identification of vulnerabilities

improve or represent new types of attack, the number of vulnerabilities being reported

would also be likely to increase.

From a business cost and end-user use perspective, vendors would prefer that vulner-

abilities never be announced or even found [10]. However, they have little opportunity to

control the release of vulnerability information unless they develop contracts with those

researchers identifying and demonstrating vulnerabilities. While this has occurred, there

are difficulties such as the fact that buying the information does not imply control; for

example, other researchers may find the same vulnerability. Consequently, vendors must

balance resources expended to develop and deploy patches for vulnerabilities against the

potential losses of revenue due to reduced end-user choice of their product.

2.2.2 Vulnerability researchers

Vulnerability research firms actively search for or buy vulnerabilities. In this thesis,

only the researchers who intend to report vulnerabilities to the vendor are addressed.

The purpose and motivation for searching for vulnerabilities may be to gain notoriety in

the hopes of increasing business volume, develop relationships which lead to increased

recognition and security related business opportunities, or perhaps, altruistically, to im-

prove the security of software products. In many cases recognition of the security firm,

whether organization or individual, seems to be important.

For example, the security firm Secunia earns money by publishing advisories to its

customers based on the vulnerabilities discovered by its research. The parent company of

the Zero Day Initiative (ZDI), TippingPoint, produces advisories and intrusion detection

7

system (IDS) signatures for its paying subscribers based on their internal research and

the vulnerabilities purchased from other researchers.

2.2.3 End-users

The end-users of software products which have vulnerabilities that have been dis-

covered but remain unpatched expose themselves or their firms to risk. Ideally, end-users

could know how many vulnerabilities exist in the software products they are using, de-

termine the probability they will be exploited, and effectively determine the potential

losses. But as discussed in Section 4.1, this information is neither dependably available

nor verifiable. So new techniques are needed to help end-users assess their risk.

Vulnerabilities which have been publicly announced help end-users make rational

decisions about whether to apply a patch if available, institute a workaround such as

disabling the service or reconfiguring the process, or accept the risk. Vulnerabilities

which have not been privately reported to the user, publicly announced, or mitigated

by a third party such as Tippingpoint supplying IDS signatures for vulnerabilities they

have purchased, leave the end-user relatively blind to the particular risk from these

vulnerabilities. Vulnerabilities which have been discovered and reported to the vendor

but not yet fixed constitute a risk which is mostly undetermined at this time but may

present opportunity for improved estimation. The end-user exposure to these software

vulnerabilities are discussed in detail in Section 4.2.

The MAV and VFD measure the relative exposure of end-users to vulnerabilities

in products from software vendors. As a result, the metrics defined here, along with

required features, could form the basis for choosing to use one software product versus

another.

8

Figure 2.1. Vulnerability lifetime model

2.2.4 Vulnerability Repositories

Vulnerability repositories such as the National Vulnerability Database (NVD)1 or

the Open Source Vulnerability Database (OSVDB)2 collect vulnerability information

and disseminate it to the public. There role in the vulnerability ecosystem is simply as

a repository of known vulnerabilities. Much of the research on the discovery of vulner-

abilities uses statistics derived from these known vulnerabilities. The metrics defined in

Chapter 4 rely on the availability of these databases; specifically, we require information

to be collected on the time of report of a vulnerability until the time a corresponding

patch is released.

2.3 Software Vulnerability Disclosure

The general model used for vulnerabilities in this work is depicted in Figure 2.1.

Vulnerabilities are discovered internally by vendors or by external entities (security re-

searchers described in Section 2.2.2). If discovered by a security researcher, he may

choose to create an exploit, turn over the information to the affected vendor (responsible

disclosure), or immediately publish it (instant disclosure). At some point, however, the

affected vendor is notified and begins development of a patch. Once a patch is released,

end users are responsible for applying the patch based on their local policies.

In responsible disclosure path, a researcher offers the vendor a grace period for

1http://nvd.nist.gov
2http://www.osvdb.org

http://nvd.nist.gov
http://www.osvdb.org

9

addressing the vulnerability. The expiry of the grace period means the instant disclosure

of the vulnerability, with or without a corresponding patch being available from the

affected vendor.

2.4 Related Work

Arora et al. produced a number of works examining the vulnerability disclosure

process as an economic decision [11, 12, 13]. In particular, [11] provides the basis for the

model described in Section 2.3. Their primary work was the influence of disclosure grace

period on vendor patch generation. However, the model proposed consisted of a number of

terms that are simply not easily derived; their model is sound, but the parameters cannot

be readily quantified. For instance, their model depends on knowing the time when a

vulnerability is discovered which is complicated by the possibility of rediscovery [8] and

by the difficulty of understanding the impact of a vulnerability [6]. The model presented

in Chapter 4 relies only on the date a vulnerability is reported to the vendor and the date

a patch is released to end-users; each of these dates are simple to collect and verify. In

later work, they examined the behavior of vendors in response to instant disclosure and

found that vendors patch instantly disclosed vulnerabilities much more quickly than those

that go through the responsible disclosure path [13]. They also examined the effect of

vulnerability announcement on attack frequency and found that patched and announced

vulnerabilities attract more attacks than either secret (unpublished) or published (not

patched) vulnerabilities [12].

Rescorla [8] questions the social utility in finding vulnerabilities. Specifically,

whether finding vulnerabilities improves mproves the overall quality of software. He

examined vulnerabilities found the NVD for four operating systems (Microsoft Windows

NT 4.0, Sun Solaris 2.5.1, FreeBSD 4.0, and RedHat Linux 7.0) and applied several soft-

ware reliability models and he concluded that there was no evidence that searching for

vulnerabilities was, in fact, improving software reliability. His conclusion is based on the

failure to reject the hypothesis that software reliability is constant despite changes in the

10

rate of vulnerability discovery.

Alhazmi and others examined vulnerability discovery models based on those used for

software reliability and measured their predictive capability [14] for vulnerability density.

This density is the ratio of vulnerabilities to code size presuming that larger codebases

naturally have more vulnerabilities. Their model is tested against several vendors and

products [15].

Ozment [16] examined vulnerability discovery models as well and describes a similar

vulnerability discovery model to Rescorla. As with Arora, et al., not all of the parameters

for the model can be easily measured for all vulnerabilities. This work also describes

some of the potential pitfalls in using software reliability models in the vulnerability

discovery process. Ozment and Schechter [7] examined the OpenBSD operating system

to decide whether its security is increasing over time by comparing vulnerability reports

to source code changes. They conclude that the rate of discovery of vulnerabilities in

“foundational” code declined over the study time and that the foundational code is likely

to greatly influence the overall rate of vulnerability reporting.

In addition to the previous works, several other authors have proposed predictive

models and metrics for explaning discovery of vulnerabilities. In [17], Kandek describes

four metrics describing the effects of software vulnerabilities: half-life (interval of reduc-

ing the number of vulnerable computers after a patch is released), prevalence (turnover

rate in “Top 20” vulnerabilities per year), persistence (total life span of vulnerabilities),

and exploitation (time between exploit announcement and first attack). These metrics

concentrate on the results of exploits stemming from software vulnerabilities and less on

the vulnerabilities themselves.

In [18], Acer and Jackson propose a novel metric for web browsers that measures the

percentage of users visiting the authors’ website that have at least one announced but

unpatched high-severity vulnerability. It is unclear how this technique may be further

generalized from web browsers, but it encourages disclosure and takes into account patch

11

deployment time. Clark et al. [19], examines the “honeymoon” period for new releases of

software which is the time from release until the fourth vulnerability is discovered. They

argue from their observations that “properties extrinsic to the software play a much

greater role in the rate of vulnerability discovery than do intrinsic properties such as

software quality.”

Shryen [20] defines called the mean time between vulnerability discoveries (MTBVD)

which is the ratio of the number of days since the release of a product and the total number

of vulnerabilities found in that product. This metric predates the “honeymoon” work

of Clark et al. [19], but is closely related, and it is also similar to the metrics defined in

Chapter 4. Shryen’s primary purpose is to examine the question of whether open source

software is more secure than closed source software. He finds no significant difference,

where Clark et al. finds that attackers both take longer to find bugs in open source

software and familarity with the open source systems does not accelerate as quickly as

with closed source counter parts.

Zhang et al. [21] defines the Time To Next Vulnerability (TTNV) metric and uses

several different data mining approaches to create a predictive model for this metric.

However, after a great deal of parameter tuning and feature construction techniques were

applied, they concluded that because of limitations in the NVD data, no predictive model

can be practically built. These authors are not alone in their laments over the limitations

in the NVD data, for example [5, 8, 19, 21]. In other work, Zhang et al. [22] experiments

with aggregating several metrics to quantify security risk of particular configurations.

Lamkanfi et. al. [23, 24] assessed automatic methods for classification of the sever-

ity reported bugs. Earlier, Cubranic and Murphy proposed textual analysis for bug

triage [25]. Both sets of authors applied linguistic techniques to determine the severity

of bug reports based on their textual content. The bug scoring system in Chapter 5 was

inspired by these works.

Some authors have applied automated techniques such as static analysis and au-

12

tomated penetration analysis to the problem of discovering vulnerabilities. Austin and

Williams [26] applied several such techniques to a healthcare software package and found

that no one technique provided sufficient coverage. Khoo et al. [27] used static analysis

software employed by two first year students to increase the number of known vulnera-

bilities in a software package by 10%.

Several authors have examined static analysis tools for various environments and

problem sets, for example [28, 29, 30, 31, 32]. In the last of these, Zitser [32] used various

static analysis tools on known vulnerabilities and found the performance of each of the

then available open source tools to be far from ideal.

13

CHAPTER 3

Justification of Vulnerability Deadlines

This chapter examines whether the length of the grace period allotted to vendors

by vulnerability research firms causes firms to release patches sooner. This chapter is a

revised and extended of the work originally published in [33].

3.1 Introduction

For the purposes of this chapter, grace period and vulnerability lifespan are defined

as follows:

• grace period s the amount of time the discoverer of a vulnerability allots to the

vendor for providing a fix, after which the researcher may independently announce

the vulnerability;

• vulnerability lifespan is the time from when a vulnerability is reported until the

vendor provides a patch.

From 2002 through 2011, CERT/CC stated that they allow vendors a 45 day grace

period [34]. In 2005 Phil Zimmerman, of PGP renown, was quoted as stating that the

vendor should be allowed 30 days to fix a vulnerability [35]. In late 2010 three security

organizations that perform vulnerability research, among other business functions, very

publicly announced new grace periods they would give vendors. Rapid7 insisted on 15

days followed by a report to CERT/CC. Thus, Rapid7 effectively allows for a 60 day

grace period [36]. Google announced they would allow a 60 day grace period [37]. The

one notable outlier during late 2010 was the Zero Day Initiative (ZDI) which announced

that they would allow vendors a 6 month, approximately 182 day, grace period [38].

The explanations and justifications from the vulnerability researchers emphasized

the intent to protect end-users. Aaron Portnoy, a representative of ZDI, was quoted as

saying “For every day a vulnerability goes unpatched, end users are susceptible, vendors

14

Figure 3.1. Vulnerability lifecycle events.

are being a little bit irresponsible by not patching them” [39]. Google Security team

members posted on the Google Online Security Blog an article titled “Rebooting Re-

sponsible Disclosure: a focus on protecting end users” [37]. And in August 2010, HD.

Moore, CSO of Rapid7, stated “The core issue is that the product has a security flaw;

debating about the correct disclosure process shouldn’t take away from the fact that the

vendor is indeed responsible for anyone exploiting a problem in their product... The argu-

ment for disclosure is simple; the more the end user knows about the problem, the better

they can defend against it” [40]. Unfortunately, none of these vulnerability researchers

provided verifiable quantitative evidence supporting their chosen grace periods.

Thus, the announced grace periods once again raise questions about the appropri-

ate disclosure timelines. The most important events in the vulnerability lifecycle are

shown in Figure 3.1. Ideally, each event could be independently observed and validated.

Unfortunately, most events are not credibly and verifiably known.

The initial discovery of a vulnerability cannot be firmly known by anyone, even a dis-

coverer, since there is always the possibility it has been previously discovered. The date

when exploitation begins is after initial discovery but otherwise unknown since exploita-

tion detection mechanisms for previously unseen exploits have questionable detection

rates. The rediscovery of a vulnerability is also problematic since the rediscoverer may

not take action that makes that fact directly observable. The total cost of a vulnerabil-

ity, which would include the total losses from its exploitation, the cost to mitigate by

end-users, and the cost for the vendor to create a patch, is not dependably and verifiably

15

Figure 3.2. Measurable vulnerability lifecycle events.

known for similar reasons.

Only the events shown in Figure 3.2 remain: the date of vendor notification and

the day of public announcement. The date reported to the vendor can in principle

be known and verified, through oversight of the security researcher who reports the

vulnerability. Of course, the disclosure date, independent of patch availability, is publicly

known. And patch release dates for a vulnerability are usually publicly disclosed but

may be determined through patch reverse engineering if necessary (e.g. [41]). These

three events represent the dependably known and measurable aspects of the vulnerability

disclosure process debate, and thus they should become the solid foundation on which

the grace period and other vulnerability disclosure questions should be discussed.

The analyses is focused on comparing and using the grace periods, and the vulnera-

bility lifespans. The analyses in this chapter do not focus on individual products nor on

the rate of vulnerability reporting, both of which are considered in Chapter 4.

3.1.1 Contributions

For assessing the value of grace periods specified by vulnerability researchers, some

indirect evidence that the shorter grace periods of 45 and 60 days do not appear as

realistic as the 182 day grace period if applied to most vulnerabilities is provided.

Strong evidence that vendors still do respond, as previous work suggests [10], to the

threat of disclosure is then provided. An analysis of the imposed 182 day grace period

demonstrates that vendors do modify their patch process so that they are more likely to

16

have a patch available within 182 days. Unfortunately, the 182 grace periods also results

in a significant increase in the number of vulnerability announcements made without a

patch being available.

3.1.2 Organization

The rest of this chapter is organized as follows. In Section 3.2 the two primary

disclosure processes are reviewed. In Section 3.3, the announced grace periods are com-

pared to current vulnerability lifespans. In Section 3.4 the impact of the ZDI, 182 day,

grace period on the speed of patch creation is assessed. Then, Section 3.5 provides the

conclusion.

3.2 Overview of Vulnerability Disclosure

Software products have vulnerabilities. The absolute number of vulnerabilities

within any given software product is currently unmeasurable with any degree of con-

fidence [7], [8]. What can be determined, and what software vendors must confront, is

the number of vulnerabilities being reported and how long it takes to produce a patch.

The length of time it takes to produce a patch is directly under the control of the vendor

and can be directly influenced by the quality and quantity of resources devoted to the

task. It is a business decision, and each vendor (perhaps each vendors product line) has

their own unique costs and benefits to consider.

The current vulnerability disclosure process has two primary forms. The first form

is usually referred to as full disclosure and in effect means that upon discovery the

vulnerability researcher may publicly announce full details of the vulnerability. The

vendor is given no forewarning. The second form, responsible disclosure, generally means

that the vulnerability researcher reports the vulnerability to the vendor and gives the

vendor time to create a patch. A coordinated public disclosure of the vulnerability is

then often made when a patch has been created by the vendor and is ready to be released.

Responsible disclosure has been the topic of heated debate. Some argue that vendors

17

are much to slow at patch development unless they are threatened with the potential of

public announcement of the vulnerability, independent of whether a patch is available

(supporting evidence may be found in [10]). Consequently, some vulnerability researchers

and firms allot a specific amount of time, the grace period, for vendors to create and

release a patch. At the end of the grace period these researchers feel free to partially or

fully disclose the vulnerability with the idea that end-users may find ways to mitigate

the problem even without a patch.

This raises the question of whether these vulnerability researcher specified grace

periods are sensible from an end-user vulnerability exposure perspective. A start to

answering this question is provided by analyzing publicly accessible lifespan data of vul-

nerabilities used in the Pwn2Own competition1, and then analyzing the lifespans of a

much more general set of vulnerabilities. All lifespan data was collected from ZDI.

3.3 Grace Periods Compared to Vulnerability Lifespans
3.3.1 Pwn2Own Vulnerability Lifespans

Pwn2Own is a well known computer hacking competition held every year since 2007

as a part of the CanSecWest security conference. The contest has high visibility and

the vulnerabilities exploited by the contestants gain a fair amount of attention from

the vendors of the exploited products. For example, Daniel Veditz, the Security Group

Moderator for Mozilla made this comment about a vulnerability exploited at Pwn2Own

in 2009: “... Since this is a high profile bug (Firefox cracked during a public hacking

contest) we need to focus on it. If we had a fix I’d like to shoehorn it into 1.9.0.8 even

though we’re past codefreeze (April release) but May’s 1.9.0.9 is more realistic. Needs to

make 3.5b4.” [42] Increased vendor attention seems like it should decrease the time for

the vendor to produce a patch.

Table 3.1 shows all 15 of the previously undisclosed vulnerabilities that could be

1http://cansecwest.com/post/2012-02-23-20:00:00_New_PWN2OWN_Rules [Accessed: January

21, 2013]

http://cansecwest.com/post/2012-02-23-20:00:00_New_PWN2OWN_Rules

18

Lifespan (days) Product Year CVE

< 45

8 Apple QuickTime 2007 CVE-2007-2175
10 Firefox 2010 CVE-2010-1121
11 Firefox 2009 CVE-2009-1044
19 Safari 2010 CVE-2010-1120
20 Safari (WebKit) 2008 CVE-2008-1026

< 60
55 Safari (WebKit) 2009 CVE-2009-0945
55 Mac OS X 2009 CVE-2009-0154

< 182
61 Adobe Flash Player 2008 CVE-2007-601
72 Safari (WebKit) 2010 CVE-2010-1119
83 Internet Explorer 8 2009 CVE-2009-1532

> 182

310+ Internet Explorer 8 2010 CVE-2010-1118
310+ Internet Explorer 8 2010 CVE-2010-1117
676+ Safari 2009 CVE-2009-1060
676+ Safari 2009 CVE-2009-1042
676+ Internet Explorer 8 2009 CVE-2009-1043

Table 3.1. Pwn2Own Vulnerability Lifespans

identified as being exploited at Pwn2Own. Of these 15, 10 have patches available and

their lifespans range from 8 days to 83 days. 50% of the lifespans were 45 days or less,

70% were 60 days or less and all of them had patches available in 182 days or less.

These vulnerability lifespans seem to be in life with the shorter grace periods alloted by

vulnerability researchers.

However, looking at the complete data in Table 3.1, the picture becomes more mud-

dled. There are 5 Pwn2Own vulnerabilities (30%) which, have yet to be fixed. Including

these vulnerabilities in the analysis, only 33% of Pwn2Own vulnerabilities are fixed in

45 days, 47% are fixed in 60 days and 67% are fixed in 180 days.

3.3.2 ZDI Vulnerability Lifespans

The lifespans for 473 vulnerabilities were collected from ZDI. The lifespans included

all vulnerabilities which were initially sold to ZDI and then disclosed sometime between

November 7, 2009 and April 30, 2011. Around 15% of the lifespans were less than 45

days, 17% less than 60 days, and fully 64% of lifespans were less than 182 days. These

lifespans can be seen in Figure 3.3.

These lifespans do raise the question of whether the 45 and 60 day grace periods are

practical at this time. With a median of 140 days, a mean of 197 days, and a maximum

19

ZDI 11−07−2009 to 04−30−2011

Lifespans (days)

0 200 400 600 800 1000 1200

0
10

20
30

40
50

60

Mean:
Median:
STDEV:
Number of Vulnerabilities: 473
Percent 45 or less: 14.59%
Percent 60 or less: 64.27%
Percent 182 or less: 64.27%

197
140
197.6

Figure 3.3. ZDI vulnerability lifespans: Nov, 2009-April, 2011.

of over 3 years, it may be unreasonable to expect vendors to be able to meet the grace

periods. Even if 10% of the vulnerabilities are granted an exception by the vulnerability

researchers, the range of lifespans is 2 days up to 421 days. The 182 day grace period

may be more hopeful since it would require a maximum vendor patch creation speedup

of 57%. Not easy, but not as difficult as the shorter grace periods.

Of course the adoption of grace periods assumes that vendors actually will speed their

patch creation process when confronted with the possibility of an independent disclosure

before they have a patch available. Work by Telang and others in 2005 provides some

indication that vendors do indeed speed up in these circumstances, in order to protect

business value [10]. But it was decided to see if there was evidence in the collected ZDI

data which indicated that is still the case.

3.4 Did Vendors Speed Up Their Patch Creation

On August 4, 2010, ZDI announced their intention of imposing a grace period of 6

months on vendors. ZDI indicated that the new policy would begin immediately.

20

3.4.1 Impact on Initial Pool of Vulnerabilities

The initial pool of vulnerabilities (InitPool) is defined to be those ZDI acquired

vulnerabilities which, as of August 4, 2011, had been reported to the vendor but were

yet to be publicly disclosed. ZDI stated that each of the vulnerabilities in the InitPool

would be treated as newly acquired. Thus February 4, 2011 would be the grace period

deadline for all InitPool vulnerabilities.

When publicly announced, there are three different states for a vulnerability. At

announcement, the vulnerability might have a patch available, it might have a vendor

specified fix other than a patch, or it might not have any mitigation at all. Since some of

the vendor specified fixes did not, in the opinion of the authors, credibly address the vul-

nerability, it was decided to conservatively group together all vulnerabilities announced

without a patch and treat them as unmitigated.

The InitPool started with vulnerabilities which had ages ranging from 14 to 1170

days. The mean age was 183 days and the median age 64 days. There were a total

of 172 InitPool vulnerabilities, of which 29 (16.9%) were eventually announced without

patches being available. All InitPool vulnerabilities were publicly announced no later

than 2 weeks after the grace period deadline. The week in which InitPool vulnerabilities

were publicly announced are shown in Figure 3.4. The number of patched and unpatched

vulnerability announcements are given for each week. It is interesting to note that 16

vulnerability announcements for which there were no patches occurred just days before

and after the grace period deadline of February 4, 2011. ZDI enforced their 6 month

grace period.

The 16.9% of InitPool vulnerabilities which were announced without a patch, can

be thought of as having exceeded the maximum 6 month lifespan imposed by the grace

period. In the 87 days immediately preceeding the ZDI announcement of a grace period,

over 32.8% of announced vulnerabilities had lifespans exceeding 6 months. So it does

appear that some patch speedup was attained after ZDI imposed their grace period on

21

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

InitPool vulnerabilities announced without a patch
InitPool vulnerabilities announced with a patch

Weeks since Aug 1, 2010

N
um

be
r

of
 In

itP
oo

l v
ul

ne
ra

bi
lit

ie
s

an
no

un
ce

d

0
5

10
15

20
25

30

Figure 3.4. Number of InitPool vulnerability public announcements (each week after ZDI
grace period announcement.

vendors. However, the InitPool vulnerabilities might have been biased towards more

difficult to patch vulnerabilities or vendors more susceptible to speeding up their patch

creation when confronted with a threat of disclosure. Since InitPool vulnerabilities might

not be representative of all vulnerabilities, two other sets of vulnerabilities were compared.

3.4.2 Lifespan Comparison Before and After ZDI Announcement

In Figure 3.5 the ZDI lifespan data is partitioned into four equal length periods.

Period 1 is the 269 days immediately before the ZDI grace period announcement on

August 4, while Period 2 is the 269 days immediately after the announcement, and

Period 3 is the 269 days following Period 2, and Period 0 is the 269 days before Period 1.

Each period has an 87 day time frame at the beginning. Vulnerability Set 0 represents

the group of vulnerabilities acquired by ZDI and reported to the vendor in the first 87

days of Period 0. Vulnerability Set 1 is the set of vulnerabilities acquired by ZDI and

reported to the vendor in the first 87 days of Period 1, and so on. The expectation

was that with Set 2 and Set 3 vulnerabilities the vendors would be more likely to have

produced patches before the 6 month grace period elapsed than with the Set 0 or Set 1

22

Figure 3.5. Three sets of ZDI acquired vulnerabilities for lifespan comparison.

0 40 80 120 160 200 240 280 320 360 400

Set 0, 39 vulnerabilities
Set 1, 56 Vulnerabilities
Set 2, 81 Vulnerabilities
Set 3, 63 vulnerabilities

Lifespans (days)

N
um

be
r

of
 V

ul
ne

ra
bi

lit
ie

s

0
5

10
15

20
25

Figure 3.6. Distribution of vulnerability lifespans for Sets 0, 1, 2, and 3.

vulnerabilities for which there had not been a grace period deadline. The vulnerability

lifespans of Set 0, Set 1, Set 2, and Set 3 were compared to determine if this effect did

in fact occur.

The lifespan distributions for both sets of vulnerabilities are shown in Figure 3.6.

The lifespan statistics for Set 1 and Set 2 can be seen in Table 3.2. In Set 2, the

vulnerability lifespans should not exceed 6 months, but 9 vulnerabilities were announced

with patches less than one month after their 6 month grace periods, and 12 vulnerabilities

were announced without patches. Together these were counted as 21 vulnerabilities which

exceeded the grace period of 6 months. Of note is that Set 1 had 51.8% of lifespans exceed

6 months while Set 2, those vulnerabilities acquired immediately after imposition of the

grace period, had only 25.9% of vulnerability lifespans exceed 6 months.

23

Table 3.2. Did ZDI announcement have an impact?
Set (i) 0 1 2 3

Total Vulnerabilities (Ai) 39 56 81 63
Range of lifespans 11–683 11–416 21–210 12–215

Mean lifespan 215 189 122 125
Median lifespan 145 190 118 140
Stdev of lifespan 182.16 93.37 52.60 49.35

Vulnerabilities announced without a patch XXX 1 12 0
Lifespans > 6 months (Bi) 16 29 21 3
Lifespans < 6 months (Ci) 23 27 60 60

Proportion > 182 days (Pi = Bi/Ai) 0.410 0.518 0.259 0.048

ANOVA Table for Sets 0, 1, 2, and 3.
df Sum Sq Mean Sq F value Pr(> F)

set 3 352843 117614 13.083 6.247e-08
Residuals 235 2112608 8990

Choosing a null hypothesis of no difference between the means of the sets, using One-

Way ANOVA, the hypothesis that the means of the populations are the same is rejected

(p = 6.2× 10−8). However, in the presence of skewed data, the Kruskal-Wallis test may

be more appropriate and the hypothesis that the sets came from the same distribution

is rejected as well (χ2 = 18.71, df = 3, p = 0.00031). The ANOVA table for the previous

test is summarized in Table 3.2, and the Kruskal-Wallis results are in Figure 3.7 along

with a boxplot of the lifespan data. Using Tukey’s procedure, Sets 0 and 1 are found

to have an equivalent mean and Sets 2 and 3 are found to have an equivalent mean.

However, Sets 0 and 1 are found to be greater than Sets 2 or 3. Using standard notation

for this: x2 x3 x1 x0, where xn is the mean of set n.

It should be noted that the ZDI grace period deadline is not entirely firm. Exceptions

may be made if ZDI, through discussion with the vendor, decides there are mitigating

circumstances. Consequently, a fairer analysis of the impact of the ZDI grace period

might focus entirely on the publicly announced vulnerabilities for which no patch was

available. Rather than 21 vulnerabilities exceeding the grace period in Set 2, there would

be just 12 vulnerabilities, 14.8%, announced without a patch. This is because 9 of the 21

24

● ●0
1

2
3

0 100 200 300 400 500 600 700

Lifespan (days)

S
et

 #

Set 0 1 2 3
Total Vulnerabilities 39 56 81 63

Median 145 189.5 118 140
Kruskal-Wallis χ2 18.71

p-value 0.00031

Figure 3.7. Summary of Wilcoxon Rank Sum test results

vulnerabilities exceeding the 6 month grace period were announced with a patch in the

seventh month. Those 9 vulnerabilities reflect some flexibility in the grace period when

ZDI believes the vendor is responding to fix the problems.

To make a corresponding change to the 29 Set 1 vulnerabilities which exceeded the 6

month grace period, only 2 were removed since they were also announced in the seventh

month. Thus there were still 27 vulnerabilities in Set 1, 48.2%, which had lifespans longer

than the extended grace period of 7 months. Following the same analysis as above this

leads to a new P-value of 0.00001. Once again the null hypothesis of equivalent lifespans

for both Set 1 and Set 2 can be rejected for any reasonable level of significance.

Because Set 1 lifespans (before the ZDI announcement) are significantly greater than

Sets 2 and 3 (both after the announcement), there is strong evidence that in the general

pool of ZDI acquired vulnerabilities, the 6 month grace period did result in vendors

speeding up their patch process. There is also evidence that the grace period results in

more vulnerability announcements without a patch being available.

25

3.5 Conclusion

Vulnerability research organizations such as Rapid7, Google Security team, and ZDI

have imposed grace periods for public disclosure of vulnerabilities with or without an

effective mitigation from the affected software vendor. At this time not data was found

which either firmly support or refute the usefulness of the shorter grace periods of 45 and

60 days. There is evidence that the ZDI grace period of 182 days yields some benefit in

speeding up the patch creation process. From a risk perspective it is important to note

that even after the new grace period there were still 25.9% of ZDI reported vulnerabilities

which did not have patches available in the specified time frame.

The ZDI grace period of 182 days appears to have had a lasting effect. Vulnerabilities

announced well after the announcement in the change in grace period, the lifespan of

vulnerabilities has stayed constant with those reported just after the announcement.

Both of these sets show significantly lower lifespan than vulnerabilities report before the

change.

26

CHAPTER 4

Analysis of Two End-User Vulnerability Metrics

This chapter describes two metrics for describing the exposure risk of software vul-

nerabilities to end-users. It is a revised and extended version of the papers published

in [43, 44].

4.1 Introduction

Every week new software vulnerabilities are discovered in many applications and

patches are issued fixing previously discovered vulnerabilities. Various measurements of

this effect have been proposed, but comparisons between similar products from different

vendors or different products with the same vendor have been difficult. This chapter

proposes two new end-user focused metrics that allow for cross product or cross vendor

comparison. The metrics are based on measurements of the number and rate of vulnera-

bilities reports, and the patch development rate for individual software products. These

measurements are related to events which are part of the vulnerability life cycle.

To quantitatively characterize the time between events in the vulnerability life cycle

model, depicted in Figure 4.1 and fully described in [11], ideally one would measure the

time from discovery of a flaw until the time all end-user machines have been patched to

address the issue. In practice, this has been demonstrated to be difficult since the times

and dates for most events along the life cycle are not credibly and verifiably known.

For instance, it is difficult to accurately record the initial discovery of a vulnerability

Discovery

Vendor

Notified

a b c d e f

Exploitation

Patch

Released

Patch

Applied

Public

Announcement

Time

Figure 4.1. Vulnerability lifetime model

27

(a), even for a discoverer because it is possible the vulnerability has been independently

discovered by another party [8]. On the other end of the life cycle, it has been shown

that applying security patches (f) involves a half-life behavior and finally tapers off at

approximately 5–10% of machines that will remain unpatched [17].

In practice, we can measure the time from when a vulnerability is reported to a

vendor (c) until the time when a patch is issued by that vendor (e). For instance, ZDI

and iDefense both buy vulnerabilities from the security research community and then

report them to the appropriate vendor. In doing so, they record the time from report to

patch release. Essentially, this leaves only two stages in the vulnerability life cycle that

can be accurately known:

• birth: vulnerability reported to the vendor (c), and

• death: patch issued by the vendor (e).

We define vulnerability lifespan in the same way as in Chapter 3: the time from

when a vulnerability is reported until the vendor provides a patch. This is the time

between the birth and death of the vulnerability. A vulnerability is considered “active”

from the time it is reported to or discovered by the vendor until a patch is supplied by

the vendor. Metrics based on the number of “active” vulnerabilities in a vendor’s queue

can be used to aid quantitative estimation of end-user exposure.

Simply examining the raw quantity of vulnerabilities reported for a product in

databases like the National Vulnerability Database (NVD) or the Open Source Vulnera-

bility Database (OSVDB) neglects the effect of the vendor response time to addressing

vulnerabilities. Likewise, examining the lifespans of vulnerabilities from sources such as

the Zero Day Initiative (ZDI) or iDefense neglects the number of vulnerabilities. New

metrics which combine both quantity and lifespan of vulnerabilities for individual prod-

ucts would be useful.

In this chaper, two new metrics are presented that capture the effect of the number

28

and rate of new vulnerabilities being found and their lifespans. The first metric, median

active vulnerabilities (MAV), is the median number of software vulnerabilities which are

known to the vendor of a particular piece of software but for which patch has been publicly

released by the vendor. The second metric, vulnerability free days (VFD) captures the

probability that a given day has exactly zero active vulnerabilities.

4.1.1 Summary of contributions

Two new metrics that focus on end-user software vulnerability exposure from in-

dividual products are defined. The two metrics are then used in a case study of four

browsers (across vendors) and two other products (within vendor) to discuss and demon-

strate that:

• end-user vulnerability exposure should be considered as a combination of lifespans

and vulnerability announcement rates (not lifespans alone), the proposed metrics

capture both aspects;

• the two metrics may be easily estimated with reasonable accuracy, and thus are

usable by end-user security practitioners and decision makers;

• individual products with the same functionality, e.g. browsers, may yield distinctly

different end-user vulnerability exposure levels.

4.1.2 Organization of Article

The rest of this article is organized as follows. In Section 4.2, the two new end-user

focused metrics are expanded upon and then in Section 4.3, the metrics are applied to four

web browsers and the results of applying the metrics are examined. Section 4.4 contains

discussion and describes related work. Finally, Section ?? provides the conclusion.

4.2 Two End-User Exposure Metrics

It is useful to provide all stakeholders (vulnerability researchers, vendors, and end-

users) with security metrics which support accountability and decision making. To this

29

Vulnerability reported to vendor Vulnerability patch announced

Time

Sum of reported, but not yet patched

Time

active vulnerabilities # days percent

0 3 10%

1 6 20%

2 17 57%

3 4 13%

MAV 2

VFD 10%

Figure 4.2. Example of MAV and VFD calculation

end, two vulnerability exposure metrics are defined as proxies for a product’s contribution

to an end-users level of vulnerability exposure. The first metric, Vulnerability Free Days

(VFD), is the percent of days in which the vendor’s queue of reported vulnerabilities for

the product is empty; viewed over the long term this is the probability that there are no

active vulnerabilities on a given day. The second metric, Median Active Vulnerabilities

per day (MAV), is the median number of vulnerabilities per day in a vendor’s product

queue. The median is used instead of mean because the median is less sensitive to extreme

outliers and skewed distributions.

Figure 4.2 shows a hypothetical example. At the top, vulnerabilities are reported

and patched as time moves from left to right. The bottom shows the running sum of

active vulnerabilities. If each horizontal division is taken to be a day, there are 3 days

with no vulnerabilities, 6 days with exactly 1 active vulnerability, 17 days with 2, and 4

days with 3. The MAV is the median number of active vulnerabilities: 2 (in other words,

on a given day there is a 50% chance the vendor is working on 2 or fewer vulnerabilities).

The VFD is 3/30 = 10%.

These metrics are primarily intended for consumption by end-users, particularly

those in charge of making policy decisions as to which software vendors and products

30

should be purchased, or which should form part of an “allowed use” policy. Comparative

evaluation of software products, or vendors as a whole, can be expressed by calculating

and examining their MAV and VFD values. A product with a small median number of

active vulnerabilities should have some preference over one with a higher median. The

inverse is true with the vulnerability free days metric where a large number is preferred

to a small number.

The information needed to calculate these two metrics for a product are the lifespan

of each reported vulnerability, and the number and rate of vulnerability disclosures.

While not currently easy to obtain, in principle this information would be easy to produce

and verify by the vendors. The data could also be verified by the independent researchers

who reported vulnerabilities, and the vendors could be induced to make the information

free and easily accessible if end-user pressure is brought to bear.

4.3 Metrics Case Study

The proposed VFD and MAV vulnerability exposure metrics were estimated for sev-

eral different software products: web browsers (Apple Safari, Google Chrome, Mozilla

Firefox and Microsoft Internet Explorer) as well as Microsoft Office and Apple Quick-

Time. To develop the metrics for each product, data was collected in order to characterize

their respective vulnerability lifespans, and number and rate of vulnerability disclosures.

After some success in characterizing this information for each product, a simulation was

written and used to estimate the metrics. The possibility for quick and easy short cuts

for approximating the metrics are discussed at the end of the case study (Section 4.3.5).

In particular, several data sources were used to estimate the:

• arrival rate of vulnerability announcements,

• number of vulnerabilities announced, and

• lifespan of vulnerabilities.

31

The arrival rate of vulnerability announcements is the time between two different

announcements of vulnerabilities for a given product. The number of vulnerabilities

announced represents the integral number of vulnerabilities disclosed as part of a specific

announcement. It is common that more than one vulnerability for a given product is

announced on a given announcement day (e.g. Microsoft “patch Tuesday”). The lifespan

of a vulnerability is the same as defined previously. It begins when the vulnerability is

reported or discovered by the vendor, and ends when the vendor supplies a patch.

4.3.1 Data Sources

Data was gathered from the National Vulnerability Database (NVD) [45], iDefense

Vulnerability Contributor Program (VCP) [46], and the Zero Day Initiative (ZDI) [47].

The NVD data was used to characterize the arrival rate of vulnerability announcements

and the number of vulnerabilities announced per instance. The ZDI and iDefense data

were used to characterize vulnerability lifespans. In all cases, descriptive statistics are

provided to give an idea of the behavior of the data harvested from each source.

The NVD consists of approximately 46,000 unique vulnerabilities enumerated by an

identifier called a Common Vulnerability Enumeration Identifier (CVE). The database is

freely available and further breaks down vulnerabilities by vendor, product, version, etc.

(Common Platform Enumeration, CPE). For this research, the XML data feed provided

by NVD was downloaded and imported into an SQL database so that arbitrary queries

could be executed. The data was used for computing the arrival rates of vulnerabilities,

and determining the number of vulnerabilities disclosed at each announcement.

The National Vulnerability Database has been widely criticized for the inaccuracies

it contains. For example, [48, 19, 21] all describe various inconsistencies in the NVD

and other vulnerability databases. In this chapter, the primary concern is describing the

concept and potential usage of the metrics presented, so there is less concern with the

absolute consistency of the existing sources.

To minimize the effects of the erroneous data in the NVD, the time span of anal-

32

Product N Time Start Time End

MS Internet Explorer 209 Jan 1, 2001 Jun 6, 2010

Mozilla Firefox 113 Jan 1, 2004 Jun 6, 2010

Google Chrome 30 Dec 12, 2008 Jun 6, 2010

Apple Safari 92 Jun 22, 2003 Jun 6, 2010

MS Internet Explorer 6 180 Jan 1, 2001 Jun 6, 2010

MS Internet Explorer 7 85 Jan 1, 2004 Jun 6, 2010

MS Internet Explorer 8 20 Jan 1, 2009 Jun 6, 2010

MS Office 246 Jan 1, 2005 Jun 6, 2012

Apple QuickTime 138 Jan 1, 2005 Jun 6, 2012

Table 4.1. Number of points and time span for each product in NVD.

ysis is limited for each product and only two fields were used: the Common Platform

Enumeration (CPE) and the “first published” date. The vendor and product fields of

the CPE were used to discriminate between products. Other parts of the CPE were

ignored, except when making the distinction between Internet Explorer versions. The

“first published” field of the NVD is used to examine the arrival rate of announcements

and the number of vulnerabilities announced per day.

Limiting the dates for which vulnerability data are collected provides the ability to

ignore the start-up effects of the NVD. As pointed out in [21], the early years of the

NVD were unstable. Table 4.1 shows the time span considered for each product and the

number of data points available in the time span. Before 2004, the Firefox browser was

a product of Netscape Communications called Netscape Communicator. It is difficult

to determine whether vulnerabilities were inherited from the Communicator product or

introduced during the transition to the Mozilla Foundation Firefox product, so the study

of this product is limited to vulnerabilities discovered after the transition. Google Chrome

was introduced in December 2008, and Apple Safari was released in January of 2003. In

addition to Microsoft Internet Explorer as a whole, individual versions are broken out

separately.

The data from iDefense and ZDI is considered to be more reliable since they can

directly observe the time between when they notify a vendor and when a corresponding

patch is produced. The former time being directly controlled by iDefense/ZDI and the

33

0 20 40 60 80
0.

00
0.

02
0.

04
Vulnerability Announcement Arrival Times (days)

D
en

si
ty

●

●
●

● ●
●

● ●
●

●

IE
Chrome
Firefox
Safari
Office
QuickTime

Figure 4.3. Histogram of vulnerability announcement rates.

latter time being publicly observable. For vendors like Microsoft which produce their

own security advisories, it might be possible to gather the required data from the issued

advisories. However, using the simulation method described in Section 4.3.2 is a more

general solution and integrates more reliable observations of vulnerability lifespans than

those provided using the NVD alone.

Vulnerability Announcements

Figure 4.3 shows the histogram of vulnerability announcements for all of the stud-

ied products; while the mean and median values differ substantially, the histograms

have roughly the same shape. Table 4.2 summarizes the statistical properties of the an-

nouncement rate. If one were to choose a web browser simply by the arrival rate of new

vulnerability announcements, one would choose Apple Safari because the expected time

between new vulnerability announcements is slightly over 25 days (more than 3 weeks),

and the other browsers are less than 3 weeks. Firefox does not fare well at all with new

vulnerabilities announced about 12 days apart.

Number of Announcements per day

However, because arrival rate is actually an announcement of at least one vulner-

ability and possibly more, the distribution of the number of vulnerabilities on an an-

nouncement day is examined. The distributions for each studied product are shown in

34

Product mean median σ min / max

MS Internet Explorer 14.95 9.0 16.3 1 / 98

Mozilla Firefox 12.09 10.0 10.5 1 / 51

Google Chrome 17.17 10.5 18.4 1 / 80

Apple Safari 25.47 15.5 28.5 1 / 125

MS Internet Explorer 6 17.36 10.0 18.6 1 / 97

MS Internet Explorer 7 23.14 13.0 41.7 1 / 365

MS Internet Explorer 8 21.15 14.0 16.5 1 / 54

MS Office 24.11 22.0 20.0 1 / 113

Apple QuickTime 46.83 33.0 45.4 1 / 202

Table 4.2. Properties of vulnerability announcement rates (days).

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

Vulnerabilities per Announcement (number)

D
en

si
ty

●

●

●
● ●

● ● ●
●

●

IE
Chrome
Firefox
Safari
Office
QuickTime

Figure 4.4. Histogram of vulnerabilities announced on announcement day.

Figure 4.4. Table 4.3 summarizes the number of vulnerabilities per announcement. In-

ternet Explorer and Safari are close to 2 vulnerabilities per announcement on average

where as Firefox averages more than 3 vulnerabilities per announcement. However, the

median number of vulnerabilities announced on an announcement day for all products is

1, meaning that at least half of the announcements are for a single vulnerability.

Vulnerability Lifespans

The ZDI and iDefense databases consist of vulnerabilities for which the correspond-

ing firm has paid a security researcher for a vulnerability. ZDI or iDefense then works

with the affected vendor to responsibly disclose the vulnerability. Both companies provide

free and online access to the data including the date the company reported the vulnera-

bility to the vendor and the date at which the vulnerability was publicly disclosed. The

collected data were used for computing the distribution of vulnerability lifespans.

35

Product mean median σ min / max

MS Internet Explorer 2.105 1.0 2.075 1 / 17

Mozilla Firefox 3.158 1.0 3.811 1 / 16

Google Chrome 2.871 1.0 3.667 1 / 19

Apple Safari 2.279 1.0 4.108 1 / 36

MS Internet Explorer 6 2.188 1.0 2.121 1 / 15

MS Internet Explorer 7 1.733 1.0 1.332 1 / 6

MS Internet Explorer 8 1.221 1.0 1.221 1 / 5

MS Office 2.795 1.0 3.231 1 / 14

Apple QuickTime 3.067 1.0 3.055 1 / 11

Table 4.3. Properties of vulnerability announcement rates (number of announcements).

Product N
mean σ min / max

(days) (days) (days)

MS Internet Explorer 33 182.1 106.9 47 / 489

Mozilla Firefox 20 91.6 50.7 11 / 184

Google Chrome 5 114.6 41.3 56 / 146

Apple Safari 10 106.8 55.5 20 / 210

MS Office 61 235.3 186.5 21 / 876

Apple QuickTime 53 113.4 79.4 3 / 372

Table 4.4. Distribution of ZDI/iDefense lifespans for each product.

Table 4.4 shows the descriptive statistics for the distribution of the ZDI and iDefense

lifespan data. Firefox has the clear lead at 91.6 days to address vulnerabilities and

Internet Explorer lags far behind with a mean of 182 days to address vulnerabilities.

Figure 4.5 shows a diagram of the empirical cumulative distribution functions of the

lifespans for each browser. For each observed sample lifespan, the graph rises 1/N at

that point along the horizontal axis. A rapid vertical rise shows a clustering of observed

lifespans and small slope shows few observed lifespans of that value. Figure 4.5 is a

more detailed examination of the distribution information in Table 4.4. For instance,

MS Internet Explorer is shown to have an overall slower distribution of lifespans; part of

this is caused by a small number of high value lifespans (> 450 days). The other three

browsers have similarly positioned and shaped lifespan distributions.

4.3.2 Model for Simulation

To facilitate estimation of the MAV and VFD metrics, a model and corresponding

simulator were constructed. A simulation was employed because the exact data are not

36

0 200 400 600 800
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0 ECDF of product vulnerability lifespans

Lifetime (days)

F
(x

) IE
Chrome
Firefox
Safari
Office
QuickTime

Figure 4.5. Empirical cumulative distribution functions of product vulnerability lifespans.

known and a closed form solution based on the empirical distributions is not yet available

(though an approximation is found and discussed in Section 4.3.5). To generate a single

simulation run, time is set to t0 and a sample is taken from the announcement arrival rate

distribution for the browser under study, ∆t. Then, at time t = t0 +∆t, a sample is taken

from the distribution of the number of vulnerabilities announced on an announcement

day. This determines how many vulnerabilities are terminated with the announcement,

n. For each i ∈ 1, . . . , n, a sample is taken from the lifetime distribution, li.

For the discrete event simulation, two events are generated:

• a vulnerability birth at time t− li and

• a vulnerability death at time t.

Finally, t0 is set to t and event generation continues until t0 > tend where tend is the

simulated time.

To compute the MAV metric, the discrete number of vulnerabilities estimated to

be in the vendors queue each day was put in rank order and the probability of each

was computed. Finding the median is then a matter of finding number of vulnerabilities

corresponding to the 50th percentile. The VFD metric is calculated by counting the

number of days in the simulation with exactly zero vulnerabilities, then dividing by the

simulation days to obtain the probability of no vulnerabilities. To minimize simulation

37

warm-up and wind-down, the simulation was run for 100 different random seeds and over

a simulated time of 100 years.

This simulation model is a G/G/∞ queuing model: generalized arrival process, gen-

eralized service time, and an infinite number of servers. The arrival process is complicated

by the fact that multiple vulnerabilities can be announced at a single point in time. Even

if the underlying data could be mathematically modeled, the authors believe that there

is no closed form solution for the MAV or VFD metrics.

Various statistical models were tried for each of the different probability distribu-

tion functions required by the simulation. Since the model parameters were not equally

well characterized by the statistical models, the simulations were run using the raw data

collected for each parameter as a discrete distribution function. The results of the simu-

lations were used to calculate the VFD and MAV for each browser.

4.3.3 Estimation of MAV and VFD Across Vendors

For estimating the MAV metric, the arrival rate of announcements, number of vul-

nerabilities disclosed per announcement, and the vulnerability lifespans are random vari-

ables distributed as described in Section 4.3.1. The distributions were derived from the

collected data. The simulation provided the results shown in Figure 4.6. The horizon-

tal axis is the number of vulnerabilities in a vendors queue and the vertical axis is the

percentage of days which had that number of vulnerabilities. The MAV metric was then

calculated as the median number of active vulnerabilities.

The MAV estimate for each of the four browsers was 9.55 for Safari, 19.1 for Chrome,

23.9 for Firefox, and 23.2 for Internet Explorer (this data is summarized in Table 4.5).

So the estimated vulnerability exposure, MAV, due to deployment of a web browser is

distinctly different depending on which web browser is in use. Safari is clearly superior

to the other three browsers.

However, there is a question of whether it is reasonable to group the data from

Internet Explorer versions 6, 7, and 8 together since each version might have distinctly

38

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

of Vulnerabilities

%
 o

f D
ay

s

Chrome
Firefox
IE678
Safari

Figure 4.6. Percent of days with the given number of vulnerabilities in a vendors queue

Browser MAV σ

Apple Safari 9.55 8.58

Google Chrome 19.1 11.3

Mozilla Firefox 23.9 11.1

Internet Explorer (all) 23.2 8.94

Separate treatment of IE versions

Internet Explorer 6 20.7 8.70

Internet Explorer 7 12.2 6.90

Internet Explorer 8 13.5 4.76

Table 4.5. Browser Median Active Vulnerabilities

different values for the model parameters and thus different MAV metric values. So

Internet Explorer was further decomposed and the MAV was recalculated for each version.

Grouping the three versions together results in a higher overall MAV because the sets of

vulnerabilities are not independent; a vulnerability may affect one or more major versions

of the browser. This in turn affects the sampling of report rate, announcement rate, and

lifespan.

The simulation results for Internet Explorer versions 6, 7, and 8 are shown in Fig-

ure 4.7. The MAV estimate was 20.9 for Internet Explorer version 6, 12.2 for Internet

Explorer version 7, and 13.5 for Internet Explorer version 8. Internet Explorer 6 is clearly

the poorest performer according to the MAV estimates. This is in line with the general

security community expectations. The cause for Internet Explorer 6 showing so poorly

while versions 7 and 8 are have quite similar MAV values is unknown. The difference is

39

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

of Vulnerabilities

%
 o

f D
ay

s

IE6
IE7
IE8

Figure 4.7. Days with given number of vulnerabilities (MS IE)

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days from vendor notification to announcement

%
 o

f D
ay

s
V

ul
n.

 F
re

e

Chrome
Firefox
IE678
Safari

Figure 4.8. Vulnerability Free Days (VFD), as a function of lifespans

speculated to be the fact that Internet Explorer 7 and 8 have more common code than

either have with version 6. Also, the Microsoft Security Development Life Cycle became

a mandatory policy at Microsoft in 2004 (three years after the release of IE6, 2001, and

two years before IE7, 2006) [9].

For estimating the VFD metric, the arrival rate of announcements and number of

vulnerabilities announced per announcement are random variables distributed as de-

scribed in Section 4.3.1. In Figure 4.8 the lifespan of vulnerabilities was varied from 1

day (vulnerabilities are addressed practically as soon as they are reported) to 182 days.

The lifespan is varied along the horizontal axis, and the percentage of vulnerability free

days is shown on the vertical axis. The goal was to examine the behavior of the VFD

40

metric as the result of different vulnerability lifespans for products.

The results are provided for Safari, Chrome, Firefox, and Internet Explorer (versions

6, 7, and 8 are treated as an aggregate since vendor behavior is being examined). The

most interesting result is that even for a vulnerability lifespan of 45 days, the percent

of days which are vulnerability free are less than 20% for Safari and less than 6% for

the three other browsers. Even Safari, the best performing browser as judged by this

metric, does not do well. When the lifespan is the length of those actually measured,

approximately 75 days for Safari and 146 days for Internet Explorer, the VFD for all

browsers is less than 10%. A poor performance by all browsers.

4.3.4 Comparisons Within a Vendor

As mentioned earlier, the metrics can be used to compare different products from

within the same vendor. The allows for a measurement of the relative effectiveness of

corporate coding standards and policies.

Table 4.6 shows the MAV metric simulated for both Apple Safari and QuickTime.

The difference in MAV shows that, on average, the QuickTime developers are working on

2 fewer vulnerabilities than the Safari team. There are several possible explanations for

this. It might be that the Safari browser, being the default browser for MacOS systems,

is under more scrutiny by security researchers (with more time dedicated to examining

it perhaps more vulnerabilities are found). From Table 4.4, the lifespan of vulnerabilities

is not largely different (106.8 and 113.4 days for Safari and QuickTime, respectively),

and the number of vulnerabilities announced per announcement day (Table 4.3) is 2.279

and 3.067. The biggest difference is in the mean days between announcements: 25.47

and 46.83 days for Safari and QuickTime, respectively (Table 4.2). Therefore the time

between announcements of vulnerabilities is the single largest factor determining the

MAV difference for these products. Figure 4.9 shows the distribution of MAV from the

simulation; the curves almost overlap except for a small shift in peak.

Microsoft Internet Explorer and the Microsoft Office suite were also compared (Ta-

41

Vendor Product MAV σ

Apple
Safari 9.55 8.58

QuickTime 7.41 5.51

Microsoft

IE (all) 23.2 8.94

IE 6 20.7 8.70

IE 7 12.2 6.90

IE 8 13.5 4.76

Office 27.1 10.3

Table 4.6. Comparison of products within a vendor

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

of Vulnerabilities

%
 o

f D
ay

s

Safari
QuickTime

Figure 4.9. Comparison of Microsoft Products

ble 4.6. In this case, the browser (IE) has a considerably smaller MAV than the appli-

cation suite (27.1 and 23.2 for Office and IE, respectively). If compared to individual

releases of IE, the difference is even more pronounced. Analysis of IE data will be re-

stricted to to comparisons against all IE data as this allows comparison over the same

time period and presumably the same changes in corporate culture within Microsoft.

Comparing the data for the two products from Table 4.2, 4.3, and 4.4, there are two

primary factors in the higher MAV: vulnerabilities per announcement and vulnerability

lifespan. In general there is a longer gap between announcements of vulnerabilities in

office (14.95 and 24.11 days for IE and Office, respectively), but the number announced

on an announcement day and the mean lifespan is much higher. On average, Microsoft

takes 53.2 days longer to fix a vulnerability in the Office suite than for IE. Figure 4.10

shows the distribution of MAV from the simulation for the two products.

42

0 10 20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

of Vulnerabilities

%
 o

f D
ay

s

IE
Office

Figure 4.10. Comparison of Microsoft Products

4.3.5 Simplification of Metrics Calculations

Both the MAV and VFD metrics could be used by end-users when making software

product purchasing or allowed use decisions. However, to gain use, they need to be able

to be quickly calculated when the proper information is available. For end-users who are

unable to deploy a simulation to calculate MAV and VFD it would be useful if there were

short cut calculations to make first order estimates of the metrics. Two short cuts were

formulated and compared the results to those from the simulation. The formulas may be

found in (4.1) and (4.2).

MAV =
(Average Lifespan)(Average Reported)

Average report rate
(4.1)

V FD = (1− e−1)MAV ≈ 0.632MAV (4.2)

Equation (4.1) comes from treating the MAV as an average; the average number of

vulnerabilities announced per day is the product of the number of announcements on

an announcement day (Table 4.2) and the inverse of the days between announcements

(Table 4.3). To get active vulnerabilities, that quantity is scaled by the average lifespan

of a vulnerability (Table 4.4).

Equation (4.2) was derived using a least squares fit of an exponential model to the

data and observing the resulting base was close to 1−e. Additional terms could be added

43

Simulated Short Cut

Product MAV MAV % Error

MS Internet Explorer 23.2 24.6 6.09%

Mozilla Firefox 23.9 23.9 0.01%

Google Chrome 19.1 19.2 0.34%

Apple Safari 9.55 9.56 0.10%

MS Office 27.1 27.3 0.66%

Apple Quicktime 7.41 7.43 0.23%

Table 4.7. Comparison of simplified calculation of MAV to simulated.

to the model, but the goal here was to provide a simple calculation for use in estimation.

Table 4.7 shows the result of using the simulation data versus the simplified calcula-

tion using (4.1). The simplified version does a reasonable job of estimating the results of

the simulation and is easy calculated directly from available data. The worst estimation

performance from Table 4.7 is Internet Explorer (6% error), yet even this calculation is

less than 1.5 vulnerabilities in magnitude.

The idea behind using MAV to compute VFD is from a software vendor point of view;

namely, a vendor has some control over the number of developers assigned to addressing

vulnerability reports. By adjusting the speed with which vulnerabilities are patched, a

vendor can pick a target VFD probability and find the average lifespan needed to achieve

it.

Figure 4.11 displays the simulated versus estimated VFD values. Ideally, the lines

for each product would follow the line y = x; the departure from this is the estimation

error. Generally, the curves follow a linear shape meaning that the first order effects of

the simulation are captured by the estimation. The model fits well the behavior of VFD

for Internet Explorer and Safari and somewhat less for Chrome and Firefox.

4.4 Discussion

This section discusses several observations made from examination of the ZDI/iDe-

fense data and the NVD. In particular, the effect of severity of a vulnerability versus

lifespan is examined (Section 4.4.1) and possible difference of severity scores based on

dataset (Section 4.4.2). Finally, related work in the area is presented and contrasted with

44

Simulated VFD (%)

E
st

im
at

ed
 V

F
D

 (
%

)

ideal
IE
Chrome
Firefox
Safari
Office
QuickTime

 0
%

 4
0%

 8
0%

 0% 20% 40% 60% 80% 100%

Figure 4.11. Estimation of VFD metric using shortcut formula

the research presented here (Section 4.4.3).

4.4.1 Severity Versus Lifespan

One of the widely used metrics for vulnerability severity is the Common Vulnerabil-

ity Scoring System (CVSS) maintained by NIST1. For all vulnerabilities collected from

iDefense and ZDI, the CVSS as recorded in the NVD was gathered. CVSS scores vulner-

abilities along several dimensions: impact to confidentiality, integrity, and availability;

access vector; access complexity; etc. The resulting score is meant to be an ordinal score

of the severity of a vulnerability. The question was then, do vulnerabilities with higher

impact (higher CVSS score) take longer to fix (have a longer lifespan from report to

patch)?

Figure 4.12a shows the distribution of lifespans for each ordinal value of CVSS score

for all products in the ZDI and iDefense data set. From this graph, it is not at all clear

that CVSS score predicts lifespan; in other words, the severity of a vulnerability does not

clearly predict how long it will take the vendor to fix it. It is true that vulnerabilities

with the highest CVSS scores (9.3 and 10.0) also account for the most extreme lifespans,

the distribution is highly skewed towards lower lifespans.

Figures 4.12b through 4.12g are subsets of the data set separated by product. There

is no clear indication in any of the graphs that CVSS score and lifespan are related. In

1http://www.first.org/cvss [Accessed: January 21, 2013]

http://www.first.org/cvss

45

the case of Google Chrome, all 5 vulnerabilities have a CVSS score of 9.3, and Apple

Safari has one vulnerability scored at 6.8 and the remaining 9 are scored at 9.3.

The conclusion is then that CVSS score is not a good indicator of the lifespan of a

vulnerability. Practically this means that vendors take approximately the same time to

fix vulnerabilities without respect to the impact on end-users.

4.4.2 Comparison of CVSS in Data Sets

It is possible that vulnerabilities collected by ZDI and iDefense differ in some way

from those otherwise reported in the National Vulnerability Database. One of the few

ways to compare the two data sets is by CVSS score. To test the hypothesis of a dif-

ference, a Kruskal–Wallis test was performed on CVSS scores separated by the factor of

source (either directly from NVD or from the ZDI/iDefense data), and Table 4.8 shows

the results. This particular test was chosen because of its non-parametric nature (less

sensitivity to skewed distributions).

Interestingly, for non-browser products (Apple QuickTime and Microsoft Office),

the hypothesis of a difference in location between CVSS scores in the NVD and those

vulnerabilities bought by ZDI/iDefense failed to be rejected. However, in all cases, for

the browsers the hypothesis that the CVSS scores is not shifted in location is rejected.

The distribution of CVSS scores for the web browsers is significantly shifted upwards

in the data from ZDI/iDefense; this means that the severity of those vulnerabilities is

considerably higher.

Product χ2 p-value

Apple Safari 13.63 2.2 × 10−4

Google Chrome 5.63 0.017

Microsoft Internet Explorer 27.54 1.5 × 10−7

Mozilla Firefox 6.43 0.011

Apple QuickTime 0.67 0.411

Microsoft Office 0.42 0.517

All Products 657.1 < 2.2 × 10−16

Table 4.8. Tests for difference in CVSS scores based on data source (df = 1).

Also in Table 4.8, all CVSS scores from the NVD versus all scores of vulnerabilities

46

bought by ZDI/iDefense is compared. As with browsers, there is a significant shift

upwards in severity for vulnerabilities in the ZDI/iDefense data set. This can be clearly

seen in Figure 4.13. This figure also demonstrates the skewed nature of CVSS scores in

both NVD and ZDI/iDefense. One possible explanation for the difference between NVD

and ZDI/iDefense CVSS scores is that ZDI/iDefense may not be willing to purchase low

impact vulnerabilities.

4.4.3 Related Work

Software life cycle metrics are a well studied aspect of development. These metrics

concentrate on the rate at which defects are detected in the various stages of the life cycle

of software. Less well understood are metrics for the security vulnerability life cycle.

Several approaches to understanding the life cycle of vulnerabilities have been under-

taken over the past few years. The approaches fall mostly into two methods: examining

one or a few software packages in detail or looking for large scale trends.

Ozment and Schechter [7], for example, falls into the former category. They examined

the discovery of vulnerabilities in the OpenBSD operating system across several years

and versions to determine whether it is getting fundamentally more secure over time.

Their conclusion was that the rate of newly discovered vulnerabilities appeared to be

slowing for “foundational” code.

Also in this category is Schryen, who examined 17 different products (open source

and closed source) [20]. This work concentrated on the question of whether open source

products are more secure than closed source products. Schryen concludes that there

is no empirical evidence that open source products and closed source products differ

significantly. Comparing Mozilla Firefox (open source) against Internet Explorer (closed

source) based on the MAV and VFD, the same conclusion might be drawn.

Frei, et al. [48] is an example of the latter category where all vulnerabilities in the

NVD and other sources are examined to find global trends. This work does not help,

though, when considering individual products or vendors and comparing them.

47

Arnold, et al. [6] examined a single product: the Linux kernel. They found a sig-

nificant number of software bugs that were later discovered to be vulnerabilities. These

delayed impact vulnerabilities highlight the difficulties in obtaining accurate and verifi-

able dates for discovery of vulnerabilities. In the case of delayed impact vulnerabilities,

the discoverer either did not check whether a bug was also a vulnerability or its impact

was not realized until well after the bug was reported.

More recently, Clark, et al. [19] took a new approach where the first four vulnerabil-

ities for a particular release of a particular piece of software were examined. Using this

approach, they claim that extrinsic properties to software development are more indica-

tive of vulnerability discovery than are intrinsic properties like software quality. Their

approach is applied across vendors, open source versus closed source, etc.

Arora, et al. [11] examined the vulnerability life cycle by concentrating on an optimal

policy for disclosure. Their work provides the model used for discussion of the life cycle in

Section 4.1. However, the approach of optimizing the disclosure policy based on economic

factors relies on many variables which are simply not credibly known.

This research is not concerned with an examination of the entire life cycle of vul-

nerabilities. Instead, a method for ranking products across vendors or products within

a single vendor on the basis of their raw number of vulnerabilities and the speed with

which they address them is examined. The result thus far has been to demonstrate the

applicability of the metrics against a small set of products.

As far as vulnerability metrics are concerned, several reports concentrate on the total

number of vulnerabilities announced over a given time (per year or per half year) and the

number of fixed vulnerabilities over the same time for example: [49, 50]. At a gross level,

this information is similar to our MAV metric, but it is not as granular. A vulnerability

can last for a year or a day between report and patch and the total announced minus

the number fixed will stay the same using this type of counting. The MAV metric takes

both the total number of announced vulnerabilities and their lifespan into account in per

48

day units.

Finally, an interesting metric was proposed by Acer and Jackson [18], which attempts

to combine: patch deployment, vulnerability severity, and user-installed browser plug-

ins. The authors gather “user-agent” strings reported by browsers visiting a site created

by the authors. From this, the number of users who are not completely up to date

with patches are counted, and the “best” browser is the one with the fewest number of

users who are not fully patched. However, this method depends on random sampling

(possibly achievable with strategically placed collectors) and only addresses software

which report complete version information. For non-browser products, it is not clear

how measurements could be conducted, and even for browsers, the authors found that

Internet Explorer does not report all of the necessary information.

4.5 Conclusion

Two new software vulnerability exposure metrics were proposed with the end-user

in mind. Both Vulnerability Free Days and Median Active Vulnerabilities were demon-

strated in a case study of the four browsers Safari, Chrome, Firefox, and Internet Ex-

plorer. Estimation values for the metrics were generated through simulation. Short

cut estimations were shown to be practical. Based on the derived exposure metrics for

each browser, there are large differences in vulnerability exposure, with Safari having the

lowest exposure.

The metrics defined in this article provide a benchmark to compare one vendor

against another. Internally, product groups can compare themselves with other product

groups within the same vendor. Just as companies doing hazardous work strive for long

stretches with no safety accidents, striving for high vulnerability free days or low median

active vulnerabilities could be a development goal itself.

In terms of the metrics defined in this article, vulnerability researchers have the

ability to keep the software vendors honest. The researchers know when they discovered

a vulnerability and more importantly when they reported it to the vendor. They are also

49

best positioned to determine whether a particular patch or solution fixes the problem.

Currently, estimating VFD and MAV requires no help from software vendors, but the

estimates are not as precise as could be with more comprehensive data.

The exposure metrics are sensitive to both lifespans and the number of vulnerabilities

being discovered and reported. Firefox, which produces patches quickest, still has one

of the worst vulnerability exposures because so many vulnerabilities are discovered and

reported. It was also noted that it may not be realistic for any of the browsers to get to

even 50% Vulnerability Free Days.

50

1.9 3.6 4 4.3 4.6 5 5.5 6 6.3 6.5 6.8 7.1 7.4 7.6 8.5 9.3 10

0
20

0
60

0
10

00

All Products

CVSS Score

Li
fe

sp
an

 (d
ay

s)

(a)

 4.3 7.5 9.3 10.0

0
20

0
60

0
10

00

Mozilla Firefox

CVSS Score

Li
fe

sp
an

 (d
ay

s)

1
4

6
3

(b)

0
20

0
60

0
10

00

Google Chrome

CVSS Score

Li
fe

sp
an

 (d
ay

s)

9.3

5

Legend
10 # samples

25th %−tile

75th %−tile
1.5 IQR

1.5 IQR

median

outlier

(c)

6.8 9.3

0
20

0
60

0
10

00

Apple Safari

CVSS Score

Li
fe

sp
an

 (d
ay

s)

1

9

(d)

 5.1 6.8 7.5 9.3 10.0

0
20

0
60

0
10

00

Microsoft Internet Explorer

CVSS Score

Li
fe

sp
an

 (d
ay

s)

2
1

3

26

1

(e)

4.3 5.1 5.8 6.8 7.6 9.3

0
20

0
60

0
10

00

Apple Quicktime

CVSS Score

Li
fe

sp
an

 (d
ay

s)

2

2
2

18

2

27

(f)

 5.1 6.0 6.8 7.6 9.3

0
20

0
60

0
10

00

Microsoft Office

CVSS Score

Li
fe

sp
an

 (d
ay

s)

5
1

2
1

52

(g)

Figure 4.12. Comparing CVSS score to vulnerability lifespan

51

N
V

D
ZD

I/i
D

ef
en

se

0 2 4 6 8 10

Figure 4.13. Distribution of CVSS scores: NVD versus ZDI/iDefense.

52

CHAPTER 5

Estimating Software Vulnerabilities

This chapter uses the bug database of an open source product to estimate the number

of bugs which have yet to discovered to be vulnerabilities. It is revised and extended

from the paper published in [51].

5.1 Introduction

Software vulnerabilities are an important aspect of managing current and future

information technology infrastructures. New vulnerabilities are discovered in software

products every day and publicly reported through a variety of publicly accessible vul-

nerability databases. What is not known, however, is whether the number of publicly

reported vulnerabilities for a software product can reasonably be used as a stand-in for the

security of the product. Without knowing this information, risk estimates for individual

products are problematic.

The definition of software vulnerability for this p comes from Krsul [4] and Oz-

ment [5]: “an instance of [a mistake] in the specification, development, or configuration

of software such that its execution can violate the [explicit or implicit] security policy.”

All software defects are not vulnerabilities by this definition, but vulnerabilities are a

subset of software defects; the important factor is whether the security policy may be

violated. As discussed in Section 5.3.5, this definition is further constrained to err on the

side of conservative estimates of the yet to be identified vulnerabilities.

This chapter describes an experiment, performed on a popular open source product,

to estimate the number of bugs misclassified as not being vulnerabilities. A subset of the

product’s bug reports were selected for detailed scrutiny. The selected bug reports and

the associated source code were then carefully analyzed to determine what portion of the

selected bugs had been misclassified as not vulnerabilities. Based on these results, an

extrapolation to the full population of bug reports is performed to provide an estimate

53

of the total population of misclassifed bugs (those which should have been identified as

vulnerabilities). Based on these estimates, it is estimated that there exist between 657%

and 672% more vulnerabilities than the 76 that are currently documented for the product

in the National Vulnerability Database (NVD)1 and the Open Source Vulnerability

Database (OSVDB)2. (Note: The few MySQL vulnerabilities listed in the OSVDB all

mapped to vulnerabilities found in the NVD, so for the rest of this chapter only the NVD

vulnerabilities will be reported).

As a consequence, there is reason to believe that the number of publicly reported

vulnerabilities in a software product is far less than those that have been discovered as

bugs but misclassified as not vulnerabilities. This leads to the conclusion that human

efforts in identifying bugs as vulnerabilities may not be very effective, and that using the

number of reported vulnerabilities as a measure of a software product’s relative risk is

highly questionable.

The remainder of this chapter is organized as follows. Section 5.3 describes the

experimental goals and setup including a description of the product evaluated, its bug

database, and the evaluation process for each bug. Section 5.4 describes the results of

the experiment, and Section 5.5 includes further analyses and discussion. Section 5.6

provides the conclusion.

5.2 Hidden Impact Bugs

Arnold et al. coined the phrase “hidden impact vulnerabilities” to describe bug

reports which are later discovered to also describe software vulnerabilities [6]. This

research refers to the same thing as hidden impact bugs since it is the bugs which have

the (initially) hidden impact of being vulnerabilities. Arnold et al. examined the Linux

kernel bug database from January 2006 to December 2008 and found 56 bugs that had

at least two weeks between a patch being committed and the discovery that the bug

1National Vulnerability Database, http://nvd.nist.gov/
2Open Source Vulnerability Database, http://www.osvdb.org/

http://nvd.nist.gov/
http://www.osvdb.org/

54

represented a security vulnerability.

In [52], Arnold et al.’s work was extended to include the timespan from January

2009 to 30 April 2011 and to include the MySQL Database Management System. The

question was whether the the number of hidden impact bugs was increasing over time

and whether a significant number existed in other products. The findings discussed below

support the idea that there is an increasing number of hidden impact vulnerabilities and

that a significant number exist in other products.

5.2.1 Linux Kernel Vulnerability Analysis

In their study Arnold et al. used a database of Linux kernel vulnerabilities for the

first time period (i.e. from the 1st of January 2006 to the 31st of December 2008). For this

time period the Linux kernel had 218 vulnerabilities reported out of which 56 (25.69%)

had an impact delay of at least 2 weeks. Impact delay was defined as the time from the

public disclosure of the bug in the form of a patch to the time a CVE was assigned to the

bug because it had now been identified as a vulnerability. It was also shown that for any

given day in the time period there was an average of 8.5 hidden impact vulnerabilities

present that affected the Linux kernel.

The number of reported vulnerabilities in software has been increasing over the past

few years [53, 54]. In order to evaluate whether the number of hidden impact vulnera-

bilities has also increased over time, a similar analysis was performed for Linux kernel

vulnerabilities for the second time period (i.e. from the 1st of January 2009 to the 30th

of April 2011). For this analysis specific rules were applied to the vulnerability database

downloaded from [53]. Vulnerabilities that affected 1) multiple processors, 2) multi-

ple distributions and 3) Linux kernel 2.6 and above, were selected for the vulnerability

database for the time period. Vulnerabilities that affected only a single processor were

excluded because these vulnerabilities affected only a small subset of users and it is dif-

ficult to identify whether they were caused by a kernel issue. Similarly, vulnerabilities

that affected only one distribution were excluded because there is no way of clarifying if

55

Number of weeks of impact delay

N
um

be
r

of
 V

ul
ne

ra
bi

lit
ie

s

0 20 40 60 80 100 120

0
5

10
15

20
25

30

Figure 5.1. Number of hidden impact vulnerabilities by impact delay for Linux kernel
(January 2009 to April 2011)

Table 5.1. Hidden impact vulnerabilities (Linux kernel)
2006 Jan. – 2009 Jan. –

Total
2008 Dec. 2011 Apr.
(First time (Second time
period) period)

Total 218 185 403
At least 2 weeks

56 (25.69%) 73 (39.46%) 129 (32.01%)
of impact delay
At least 4 weeks

38 (17.43%) 55 (29.73%) 93 (23.08%)
of impact delay
At least 4 weeks

31 (14.22%) 29 (15.68%) 60 (14.99%)
of impact delay

the vulnerability was due to a kernel issue. Vulnerabilities that affected Linux kernel 2.6

and above were selected because it was the latest version available in 2006. These rules

also seem to match the rules applied in [6]. Thus the vulnerability database contained

185 vulnerabilities for the second time period, which is a 15% reduction from the first

time period. However, the number of vulnerabilities with at least 2 weeks of impact delay

increased to 73 (39.46%). Figure 5.1 shows the number of hidden impact vulnerabilities

with different impact delays. Table 5.1 shows the number of vulnerabilities with at least

2, 4 and 8 weeks of impact delay for the two time periods.

Further, on any given day, there were 9.8 hidden impact vulnerabilities in existence

on average during the second time period. Figure 5.2 shows the number of hidden impact

vulnerabilities that existed on each day for the second time period.

Thus, the number of hidden impact vulnerabilities in the Linux kernel has increased

56

2009 2010 2011

5
10

15

Time

H
id

de
n

Im
pa

ct
 V

ul
ne

ra
bi

lit
ie

s

Figure 5.2. Number of hidden impact vulnerabilities that existed per day for the Linux
kernel (January 2009 to April 2011)

Table 5.2. Hidden impact vulnerabilities (MySQL)
2006 Jan. – 2009 Jan. –

Total
2008 Dec. 2011 Apr.
(First time (Second time
period) period)

Total 37 29 66
At least 2 weeks

22 (59.46%) 19 (65.52%) 41 (62.12%)
of impact delay
At least 4 weeks

21 (56.76%) 19 (65.52%) 40 (60.62%)
of impact delay
At least 4 weeks

17 (45.95%) 16 (55.17%) 33 (50%)
of impact delay

in both percentage and magnitude for the 2009 to 2011 time period. Furthermore, the av-

erage number of hidden impact vulnerabilities in existence per each day has also increased

for the same time period.

5.2.2 MySQL Vulnerability Analysis

To expand on the knowledge gained from examining a single product (the Linux

kernel), the MySQL database server was analyzed. Like Linux, MySQL has a public

database of bugs and a significant number of vulnerabilities in the MITRE CVE database.

Using the same criteria as discussed in Section 5.2.1 for the first time period, there

were 37 vulnerabilities in the MITRE CVE database out of which 22 (59.5%) had an

impact delay of at least 2 weeks (see Table 5.2). An average of 3.45 hidden impact

vulnerabilities affected the MySQL database server per day for the same time period.

For the second time period, 29 vulnerabilities were reported and 19 (65.5%) of these

57

Number of weeks of impact delay

N
um

be
r

of
 V

ul
ne

ra
bi

lit
ie

s

0 20 40 60 80 100 120

0
5

10
15

20

Figure 5.3. Number of hidden impact vulnerabilities by impact delay for MySQL (De-
cember 2003 to April 2011)

were hidden impact vulnerabilities that had an impact delay of at least 2 weeks. Although

the number of hidden impact vulnerabilities has not increased in absolute terms, it has

increased percentagewise in the 2009 to 2011 time period.

Figure 5.3 shows the number of vulnerabilities by impact delay for the MySQL

database server. Comparing Figure 5.1 and Figure 5.3 shows that the median impact

delay time for MySQL is much higher (11 weeks for Linux and 20 weeks for MySQL).

Also, the distribution is of a different shape which may reflect the different priorities of

the developers of the two projects.

Finally, Figure 5.4 shows the number of hidden impact vulnerabilities on a given day

for MySQL for the time period from January 2009 to April 2011. At any given day during

the second time period, on average there existed 3.75 hidden impact vulnerabilities for

the MySQL database server.

Thus, similar to Linux, MySQL hidden impact vulnerabilities account for a signifi-

cant portion of the total number of vulnerabilities and the percentage of hidden impact

vulnerabilities has increased in the second time period.

58

2009 2010 2011

0
2

4
6

8
10

Time

H
id

de
n

Im
pa

ct
 V

ul
ne

ra
bi

lit
ie

s

Figure 5.4. Number of hidden impact vulnerabilities that existed per day for the MySQL
database (January 2009 to April 2011)

5.3 Experimental Goals and Setup

The goal of the experiment was to determine if the total number of discovered

vulnerabilities for individual software products (including those bugs misclassified as not

being vulnerabilities) is much larger than the currently reported number of vulnerabilities

in the NVD.

If the number of misclassified bugs is large then many analysis based on reported

vulnerabilities, such as the half life of vulnerabilities [13] or rate of vulnerability discovery

[15], are called into question. The experimental results may also suggest a need for

improved bug classification in order to provide much stronger vulnerability data sets for

vulnerability research; reduce vulnerability attack time windows; and allow more effective

risk comparisons between software products.

Further, the results may also indicate whether or not the largely human process of

identifying which bugs are also vulnerabilities is effective, and perhaps suggest a need for

improved bug triage tools to aid more effective identification of vulnerabilities by software

developers. In addition, a significantly large number of misclassified bugs could poten-

tially provide new insight into vulnerability attributes and an associated opportunity for

improvement in vulnerability identification tools such as static analyzers.

Each of the sub-sections below describes a part of the process used to conduct the

59

experiment: product selection (5.3.1), MySQL bug database overview (5.3.2), selected

subset of MySQL server software (5.3.3), MySQL bug scoring process and results(5.3.4),

and determining the number of misclassified bugs (5.3.5).

5.3.1 Product Selection

The first step in this experiment was to select a software product for evaluation.

The ideal product would satisfy a number of properties. These properties consist of:

• 1 – product pervasiveness,

• 2 – large number of announced vulnerabilities,

• 3 – source code availability,

• 4 – publicly accessible bug reports.

Pervasiveness was desired so that there would be some confidence that the product’s

code base, and its associated bugs, had received significant security attention. A fairly

large number of publicly announced vulnerabilities was needed to both confirm that the

code base had received security scrutiny, and to allow credible comparisons relative to

the number of new vulnerabilities identified (if any). The product’s source code needed

to be available so that a bug could be reproduced and effectively evaluated for its security

impact. And, of course, the bug reports were required to be publicly accessible so that

those bugs classified as not vulnerabilities could be reassessed.

As discussed below, the MySQL product reasonably meets each of the four desired

properties.

First, MySQL is widely deployed. It is part of the “LAMP” configuration of Linux

(Linux, Apache, MySQL, and PHP) which is used on a large number of deployed web

sites.

Second, at the time this experiment was conducted, the National Vulnerability

Database listed 107 vulnerabilities for MySQL announced from 1998 through 2011. The

60

Table 5.3. Number of first published vulnerabilities and bug reports by year for MySQL
Year Vulnerabilities Bugs
1998 1 —
1999 0 —
2000 3 —
2001 6 —
2002 8 15
2003 5 2225
2004 9 5354
2005 11 8282
2006 14 8295
2007 14 7558
2008 7 7596
2009 7 7392
2010 6 8241
2011 16 —

Sub Total 107 54958
No such bug 9
No access to bug 4480
Total bug reports 59447

number of vulnerabilities published per year is shown in the second column of Table 5.3.

Third, the source code for all versions of the MySQL software was available for

analysis. Although MySQL does not maintain old software source code on their servers,

it was possible to reconstruct the state of the code at each release using the available

source code management system (Bazaar).

Fourth, although the preference would be to have all bug reports available for eval-

uation this did not appear feasible after a quick evaluation of a number of products.

Fortunately, over 92% of MySQL bug reports were publicly accessible and this seemed

to reasonably meet the desired property.

Consequently, the MySQL software product was selected for evaluation.

5.3.2 MySQL Bug Database Overview

A public bug database was setup for MySQL on September 12, 2002, and contains

59447 unique bug identifiers as of the end of 2010. The distribution of bug reports by

61

year is shown in the third column of Table 5.3. Of the 59447 bug reports, 4480 (7.5%)

are not accessible to the public, and 9 (0.02%) simply do not exist.

The non-public bug reports perhaps contain either private customer data or informa-

tion that may contain information regarding vulnerabilities. Since there is no information

regarding these bugs publicly available, these bug identifiers were discarded. This left

54958 valid bug identifiers for consideration.

Unfortunately, no small team can examine that many bug reports with sufficient

diligence to credibly identify those bugs which are also vulnerabilities. The analysis

required is too detailed and the rate of vulnerability occurrence is too small. For instance,

during the years 2002 to 2010 (Table 5.3), the ratio of reported vulnerabilities to bug

reports is approximately 0.0018 (about 1 : 556). For this and a few other reasons, as

explained below, it was decided to further narrow the evaluation focus to a subset of

MySQL server software.

5.3.3 Selected Subset of MySQL Server Software

It was decided to focus on bugs affecting the MySQL server itself (not client pro-

grams, support scripts, or third party applications) based on matching the category field

in the bug database. The decision to exclude client bug reports was made because in a

given installation, a wide variety of client applications may be used to access the server

and the choice was to focus on the most commonly deployed aspects of the package (the

part of the package with the most potential impact on end-users).

Bugs relating only to release 3.X of the database server software were discarded

because the bug database barely covers the development of this branch; the final release

of the 3.X branch was version 3.23.58 on September 11, 2003 (slightly less than a year

after the bug database was created).

Bugs only affecting the “telco” and “Falcon” branches of MySQL server software were

also discarded. Neither of these branches were released officially and thus vulnerabilities

in these branches would not have wide spread implications and the software may not

62

have undergone a rigorous security vetting.

The telco branch was a fork of MySQL 5.1, integrating the MySQL Cluster technol-

ogy of highly available distributed operation. At least some of the code has since been

integrated into official releases so only bugs in the early development branch are excluded

from this study.

The Falcon storage engine was a part of the MySQL 6.0 branch which had only

one “official” release. Since the merger with Oracle, this development branch has been

abandoned [55]. Thus all bugs in this branch are excluded from this study.

These reasonable exclusions allowed a focus on the four major development branches

of MySQL server (4.X, 5.0, 5.1, and 5.5) all of which were formally released for general use;

not on development branches which may have been publicly available but not intended

for production environments (so called alpha and beta releases); and overlap the time

period covered by the bug database.

Applying the above exclusions to the MySQL bug database eliminated 24230 (44.1%)

of the 54958 bugs leaving 30728 bugs still under consideration (second column of Ta-

ble 5.4). The same exclusions were applied to the MySQL vulnerabilities listed in the

NVD and additionally discarded the few disputed vulnerabilities. This process resulted

in the elimination of 31 of the 107 vulnerabilities in NVD, which left 76 reported vul-

nerabilities in the MySQL server software under evaluation (third column of Table 5.4).

Note that with these exclusions, the ratio of reported vulnerabilities to bug reports has

increased to approximately 0.0025 (about 1 : 404).

Table 5.4. Applying rules to Bugs/NVD CVEs.
Bugs CVEs

Starting 54958 107
Non-server 20893 13
Wrong version 3337 15
Disputed — 3
Remaining 30728 76

63

5.3.4 MySQL Bug Scoring Process

In the remaining set of 30728 bug reports under consideration, it was not known how

many, if any, were unidentified vulnerabilities. Since there were still too many bugs to

carefully evaluate, the decision was made to create a scoring system intended to indicate

the likelihood that a bug might be misclassified and actually be a vulnerability. The

scoring system was created by two expert vulnerability researchers and involved a two

step process.

In the first step, the experts specified a set of text strings which, if found in a bug

report, might indicate the bug was more or less likely to be a vulnerability (e.g. a bug

involving illegal instruction exceptions). The set of text strings can be found in column

one of Table 5.5.

In the second step, each bug’s score was initialized to 0 and the bug report was then

searched for the specified text strings. When a text string was matched the associated

weight of the text string was added to the bugs overall score. A given bug report could

have matches with zero or more text strings. The full listing of the text strings assigned

weights can be found in the second column of Table 5.5. The table also shows in column

three how many of the 30728 bug reports were found to have each of the associated text

strings.

Before applying the scoring system to the 30728 bugs under consideration it was

tested to assess potential effectiveness. The set of bug reports associated with publicly

identified MySQL server vulnerabilities were scored, and then the set of remaining bug

reports which were not identified as vulnerabilities were scored. These two sets of scores

were then compared with the expectation that the scores of the publicly identified vul-

nerabilities would be higher than the scores of the bugs which had not been identified as

vulnerabilities.

64

Table 5.5. Text string weighting and occurrence counts
Text Strings Weight How Many Description
submitted < Jan 1, 2003 -100 10 Bugs submitted before Jan 1, 2003
’%signal 11%’, ’%sig=11%’,

+100 1755 Reports showing signal 11 (SEGV)
’%egfault%’, ’%handle segfault%’

’%signal%’, ’%sig=%’ +50 2433 Reports showing POSIX signal aborts
’%pthread kill%’ +50 342 Calls to pthread kill()

’%signal 6%’, ’%sig=6%’ -50 524 Calls to abort()

’% assert fail%’ -20 326 Calls to assert fail()

’%-I../../..%’ -50 33 Compiler errors
’%write core%’ +100 312 Calls to write core()

’%corruption%’ +100 967 Reports mentioning “corruption”
’%deref%’ +100 82 Reports mentioning “deref”
’%double free%’ +120 45 Double free assertion failures
’%Error::%’ +100 9 Calls to error routines
’%exploit%’ +120 73 Reports mentioning “exploit”
’%gcc%’ -20 1134 GCC errors
’%GDB is free software%’ +100 46 GDB backtraces
’%signal 4%’, ’%sig=4%’ +200 9 Illegal instruction traps
’%mysqldump%’ -50 1171 Uses of “mysqldump”
’%0x000000%’ +20 977 NULL addresses in backtrace
’%pointer%’ +20 2041 Mentions “pointer”
’%raise%’ -50 747 Raises exception
’%main security ctx%’ +100 7 Uses of main security ctx()

Scoring System Test

To assess the effectiveness of the scoring system, the references of the 107 known

CVEs for MySQL server (described in Section 5.3.1) were examined. Specifically, each

known vulnerability for was searcjed fpr references to specific MySQL bug reports. Ref-

erences from the NVD to other vulnerability databases (OSVDB, ISS Xforce, etc.) were

searched for references to bug reports. The MySQL bug database was searched for ref-

erences to CVEs. In all, 74 mappings from bug report to CVE and/or vice versa were

found and the results are in the top half of Table 5.6).

Some of the 74 bugs where then expluded for a variety of reasons. Bugs were

unrelated to MySQL were exluded (e.g. a CVE identifier appears in a Perl version string

in bug 19532). Multiple CVEs (CVE-2008-4097, CVE-2008-4098, and CVE-2009-4030)

point to MySQL bug 32167 so the latter two mappings were excluded. CVEs referencing

bugs that were not publicly accessible were also excluded (e.g. CVE-2010-3838 maps to

bug 54461 which is not accessible to the public). All of these exclusions are summarized

in the bottom half of Table 5.6.

The scoring system as described in Section 5.3.4 was then applied separately to the

65

Table 5.6. Break down of CVE/Bug identifier mappings
Mappings Number
CVE ⇒ bug 26
bug ⇒ CVE 9
CVE ⇔ bug 39
Total References 74
Exclusion
not MySQL related 3
duplicate (CVE ⇒ bug) 2
third party 4
disputed in NVD 3
client application 4
no access to bug 5
wrong version 3
Total Excluded 26
Remaining 48

48 bug reports for identified vulnerabilities, and the bug reports for which there is no

associated vulnerability. A one-sided Wilcoxon Rank Sum Test of the two populations

was performed. The hypothesis that the medians of the two distributions are equal is

rejected (Table 5.7). The scoring system scored bug reports significantly higher for known

vulnerabilities than for other bugs. This means that on the surface at least, the scoring

system shows some preference for vulnerabilities. Figure 5.5 shows the distribution,

mean, and median for both populations.

Table 5.7. Test of scoring system preference for vulnerabilities.
score

population N mean median
mapped 48 75.83 0
not mapped 30680 12.23 10
Total 30728
Wilcoxon W 1006742
p-value 2.145× 10−10 (one tail)

The scoring system was applied to the MySQL server bug reports under considera-

tion.

66

m
ap

pe
d

no
tm

ap
pe

d
−100 0 100 200 300 400 500

score

mean=12.23, median=0

mean=75.83, median=10

Figure 5.5. Distribution of bugs mapped to vulnerabilities and otherwise.

Distribution of scores

score

F
re

qu
en

cy

−100 0 100 200 300 400 500

0
50

00
15

00
0

25
00

0

mean = 12.3
median = 0
N = 30728

Figure 5.6. Distribution of MySQL server bug scores

Scoring System Results for MySQL Server

The application of the bug report scoring system produced the distribution of scores

shown in Figure 5.6. The vast majority of scores fall in the interval (−50, 0]. Figure 5.7

zooms in on the distribution of the 4252 bugs with scores greater than 0.

Unfortunately, 4252 (13.8% of the 30728 server bugs under consideration) was still

too many to evaluate. The bugs were divided into four disjoint groups based on score

(second column of Table 5.8). The percent of misclassified bugs (i.e. vulnerabilities)

within each group was then estimated.

67

Distribution of scores > 0

score

F
re

qu
en

cy

0 100 200 300 400 500 600

0
50

0
15

00
25

00
35

00

2614

1130

397
101 9 1

Figure 5.7. Distribution of MySQL server bug scores greater than 0

5.3.5 Determining Number of Misclassified Bugs

The population of bugs in each of the four groups mentioned above in Section 5.3.4

were separately sampled except for Group 3 where the population was small enough to

examine all bugs in the Group. The population size and sample size for each group is

shown in the third and fourth columns of Table 5.8 respectively. Each of the sampled

bugs was carefully analyzed to determine if it was also a vulnerability.

Table 5.8. Examined bug report totals
Group Score Total Size Sample Size

0 ≤ 0 26476 160
1 (0, 100] 2614 46
2 (100, 400] 1628 55
3 > 400 10 10

Total 30728 271

The analyses assumes that the adversary would be able to execute arbitrary queries

as an authenticated user. The reason for this assumption is the fact that a typical

deployment of MySQL involves creation of database and user, and then web software

is used to provide access to the database. The created user often has full access to the

database.

Creation of a reliable exploit for a vulnerability requires a significant amount of work.

For the purposes of this experiment, it was decided to stop the evaluation short of this

68

point. Instead, using terminology similar to Microsoft’s Exploitability Index (EI) [56],

evaluation stopped at the point of determining whether an exploit was likely to be possible

or not. The Microsoft’s EI can be one of three values3:

• 1 – Consistent exploit code likely,

• 2 – Inconsistent exploit code likely, and

• 3 – Functioning exploit code unlikely.

To error on the side of conservative estimates, vulnerabilities for which it was believed

exploit code was unlikely (EI 3) were not included in the vulnerability counting and

estimations.

Similarly, to error on the conservative side and also proactively dampen potential

criticisms that primarily uninteresting vulnerabilities were found, it was decided to not

include Denial-of-Service vulnerabilities in counts and estimations. For instance, a basic

NULL pointer dereference is, without additional resource manipulation (e.g. memory),

not exploitable [57]. Dereferencing a NULL pointer will simply cause the program to

crash. Such bugs, by themselves, can be used to do little else than create a Denial-of-

Service. In brief, only those vulnerabilities which are likely to allow violations of security

policy and/or arbitrary code execution were counted.

To summarize the overall conservative approach taken for determining whether a

bug was a vulnerability, the bug:

• must affect the MySQL server software (client programs out of scope),

• must be in a released version of the software,

• must likely be susceptible to exploit code,

• must not be a denial-of-service.
3The Exploitability Index was “clarified” by Microsoft on December 13, 2011 and the definitions

used here are the original definitions.

69

5.4 Experimental Results

After careful evaluation of the selected bug reports from each scoring group, 12 bug

reports were identified that had been misclassified as not vulnerabilities. Without even

extrapolating to the entire bug population, this represents a 15.8% increase over the

current publicly reported vulnerabilities for the MySQL server code under evaluation.

After extrapolation to the total set of MySQL server bug reports, it is estimated that

there are between 499 and 587 bugs which have been misclassified. This represents an

estimated increase in vulnerabilities ranging from 657% to 672%.

In Section 5.4.1 the evaluation steps for the bugs sampled from each scoring group

are described. Each step represents the identification of one or more bug attributes. In

Section 5.4.2 the empirical results from examining the sampled bug reports to determine

the number of vulnerabilities present are provided. In order to be sensitive to the concerns

of end users, the newly identified vulnerabilities are not described. However, the bug

identifiers for the sampled bugs within each scoring group are provided in Appendix A

in the hope that other research groups will be motivated to duplicate and extend this

research. In Section 5.4.3, these empirical results are used to extrapolate the statistical

bounds on the number of misclassified bugs (i.e. vulnerabilities yet to be identified as

such) in MySQL server code.

5.4.1 Vulnerability Evaluation of Sampled Bugs

The number of sampled bugs from each bug report scoring group are presented in the

third column of Table 5.9. A maximum four step process was instituted for evaluating

each of the sampled bugs.

The first evaluation step was to read each sampled bug report and determine if the

bug was either a feature request or assessed to really not be a bug. A ”feature request”

attribute, column two of Table 5.10, is simply a request from a user to modify software

that does not currently cause any unintended behavior of the server (e.g. Bug #26602

where a user suggests using a single lock variable instead of several). Outside of Group 0

70

Table 5.9. Newly identified vulnerabilities by scoring group
Group Score Sampled Vulnerabilities

0 ≤ 0 160 1 (0.6%)
1 (0, 100] 46 4 (8.7%)
2 (100, 400] 55 5 (9.1%)
3 > 400 10 2 (20.0%)

Total 271 12 (4.4%)

(lowest scored vulnerabilities) feature requests were not found.

The “not a bug” attribute, column three of Table 5.10, indicates that while the user

reporting the bug believes the observed behavior is abnormal, it is not considered to be

so by the MySQL developers. For example, bug #29033 describes a user expectation

problem; the database was behaving as intended but not as the user hoped. This bug

attribute was only found in the sampled bugs of the lowest two scoring groups.

All sampled bugs identified as a feature request or not a bug were set aside with no

further analysis devoted to them. This first step was relatively quick and easy.

The second evaluation step was to determine if bug could be reproduced if not

already excluded in step 1. The “not reproducible” attribute, column four of Table 5.10,

describes bugs that could not be reproduced by the authors. In the case of bug #10918,

a machine running SCO UNIX was not available to the authors, and for bug #24429,

there was simply not enough information provided in the bug report to reproduce the

problem described by the submitter.

Those sampled bugs which could not be reproduced received no further analysis.

This second step varied in difficulty with some bugs easy to reproduce; some bugs difficult

to reproduce; and some which were not reproducible.

The third evaluation step was to review the sampled bugs remaining after the first

two steps and determine if they represented NULL pointer dereferences, column five

of Table 5.10. As described in Section 5.3.5, these bugs are generally not exploitable

without additional resource manipulation. So if the bug was a NULL pointer dereference

then further analysis was done to determine if the bug could be exploited through some

71

manipulation of memory such as is done in heap spraying [58]. This third step generally

required a significant investment of time.

In the fourth evaluation step all remaining sampled bugs, column five of Table 5.10,

received in depth vulnerability analyses. Each required an investment of time and exper-

tise roughly similar to, or exceeding, that used in analysis of NULL pointer dereferences.

Table 5.10. Types of bugs within each group.
Feature Not A Not NULL Deeper

Group Request Bug Reproducible Pointer Analyses
0 8 12 10 3 127
1 0 1 8 1 36
2 0 0 23 8 24
3 0 0 6 1 3

Total 8 13 47 13 190

5.4.2 Newly Identified Vulnerabilities

In all, 12 previously unidentified vulnerabilities were found using the MySQL bug

database by first searching through the sampled bug reports and then examining the

affected code. The process for doing this was laborious, requiring duplication of the

relevant portion of the environment in which the bug was reported and source code

analysis by an experienced vulnerability researcher.

Table 5.9 shows the break down of how the newly identified vulnerabilities fell within

each of the scoring groups described in Section 5.3.4. Most of the vulnerabilities fell in

groups 1 through 3 (further evidence that the scoring system was effective); however, one

vulnerability was found in Group 0 (score ≤ 0) after analyzing 160 bug reports in that

Group.

5.4.3 Extrapolation to Entire Bug Population

To extrapolate to the entire population of MySQL server bugs under consideration, a

simulation of 500,000 experiments was run using a population size of 30,728 bugs stratified

as defined in Table 5.8. Within each strata, random Bernoulli trials were conducted with

72

Vulnerabilities

D
en

si
ty

0 100 200 300 400 500 600
0.

00
0.

04
0.

08

●

●

●

●

●

Total
Group 0
Group 1
Group 2
Group 3

Figure 5.8. Simulated probability density functions

a probability of success equal to the probabilities in Table 5.9. The expected number of

bugs that are also vulnerabilities (E(y)) can be calculated in a straightforward manner

given N = 30728, xi = (1, 4, 5, 2), ni = (160, 46, 55, 10), and Ni = (26476, 2614, 1628, 10)

and Equation 5.1.

E(y) = N
3∑
i=0

Nixi
Nni

≈ 543 (5.1)

However, the simulation allows for the combination of the the mixture of stratified

binomial experiments into a single experiment and to obtain a 95% confidence interval

on the number of remaining vulnerabilities. The simulation resulted in a mean number

of vulnerabilities of 543 and a 95% confidence interval (499, 587). Figure 5.8 shows the

PDFs obtained from the simulation for each group and the aggregate.

5.5 Discussion

In this section, the newly identified MySQL vulnerabilities (in addition to those

previously reported) are analyzed from two different perspectives: distribution across

time and by CVSS score (Section 5.5.1). An estimate of the number of machines on the

Internet which potentially could be affected by the new vulnerabilities we identified is

presented (Section 5.5.2).

73

2002 Q4 2004 Q3 2006 Q2 2008 Q1 2009 Q4

Time (Year/Quarter)

0
5

10
15

20
25

score <= 0
0 < score <= 100
100 < score <= 400
score > 400

Figure 5.9. Time distribution of examined bugs

2002 Q4 2004 Q3 2006 Q2 2008 Q1 2009 Q4

Time (Year/Quarter)

0
50

0
10

00
15

00 score <= 0
0 < score <= 100
100 < score <= 400
score > 400

Figure 5.10. Time distribution of all server bugs

5.5.1 Data Analysis

To check the sampling mechanism, the time distribution of the sampled bugs is shown

in Figure 5.9, and the distribution of all MySQL server bugs is shown in Figure 5.10. The

two distributions share a similar shape until Q2 of 2006, after which the sampled bugs

have a smaller relative population. This change in overall shape is due to the stratified

bug sampling based on each bug scoring group.

CVSS (Common Vulnerability Scoring System) scores were applied to the identified

vulnerabilities and their time distribution is shown in Figure 5.11. Most of the newly

identified vulnerabilities were scored at 6.0 (medium severity). While scoring the new

vulnerabilities, partial scores for the confidentiality, integrity, and availability dimen-

74

2002 Q4 2004 Q3 2006 Q2 2008 Q1 2009 Q4

Year/Quarter

C
ou

nt

0
1

2
3

4.6
6.0
6.5

Figure 5.11. Time distribution of examined bugs and CVSS score

(0−2] (2−4] (4−6] (6−8] (8−10]

CVSS Score

C
ou

nt

0
5

10
15

25
35

NVD
Discovered

Figure 5.12. Known vulnerabilities and new vulnerabilities distribution by CVSS

sions (CIA dimensions) were given. This reflects a conservative approach and is justified

because there was no “weaponize” the exploits for the vulnerabilities found.

Figure 5.12 shows the distribution of CVSS scores for known vulnerabilities from

the NVD. The new vulnerabilities identified as a result of this study fall above the

median CVSS score, yet below the maximum score of 10. If the CIA dimensions were

ranked as ’complete’ instead of ’partial’ compromise, as would be expected them to be for

weaponized exploits, then even the lowest CVSS score for these vulnerabilities would be

7.1 (this is despite requiring authenticated access and having medium access complexity).

75

5.5.2 Affected Machines

One might argue that the newly identified vulnerabilities primarily occur in older

versions of the software and thus the number of affected machines is likely to be small.

The assumption is that most MySQL server installations will have been upgraded to the

newest version of the server software. To assess this argument, the Shodan computer

search engine4 which regularly scans the Internet collecting banner strings from applica-

tions was used. To ensure freshness of the results, the query was limited to machines dis-

covered after Jan 1, 2012. Fortunately, MySQL reports its version string immediately af-

ter a client connects. The version string takes the following form: 5.0.16-standard-log

where 5.0.16 is the version number and the remaining portion are compiled in options.

In all, Shodan found 1.5 million hosts that report a MySQL version string. Com-

bining that information with the versions affected by the newly identified vulnerabilities,

an estimate of the number of affected machines identified by Shodan was possible. The

results are shown in Table 5.11 for 2 of the 12 vulnerabilities identified as a result of this

study.

These 2 vulnerabilities represent the range of values for the number of machines

affected by each of the 12 vulnerabilities. Interestingly, it is against best practices to

expose a MySQL server directly to the Internet; the database server provides the ability

to restrict, by IP address, which machines can connect and any modern firewall (host

based or hardware based) could be used to prevent similar connections. So it seems

reasonable to assume that the 1.5 million hosts is a limited subset of machines actually

running the MySQL server versions of interest in this study.

This analysis suggests that even vulnerabilities in older version of the MySQL server

software may still be of potential impact to a large number of machines.

4SHODAN – Computer Search Engine, http://www.shodanhq.com

http://www.shodanhq.com

76

Table 5.11. Number of affected machines by vulnerability.
Vuln. # affected %
V1 17790 1.16%
V2 413065 26.92%
Total 1534188

5.5.3 Study Limitations

The primary threat to validity comes in generalizing the experimental results from

MySQL server software to a wider population of software products. This work examined

the one software package and thus it is not known whether such high estimates for

the number of misclassified bugs holds true for all software products. There is some

evidence however to suggest that at least one other product has a similar incidence of

misclassification. In [6], Arnold, et al. examined the Linux kernel for hidden impact

bugs (bugs reported and fixed long before they were identified as vulnerabilities). They

found a surprising number of bugs misclassified in this fashion. [52] found similar results

for newer bugs reported in the Linux kernel and also for MySQL bugs. This later work

also indicates that the incidence of these hidden impact bugs appear to be increasing

with time. Consequently, there is at least some preliminary evidence that the problem

of misclassified bugs may actually be getting worse, rather than better, with time.

To improve the misclassified bug estimates, increasing sample size and number of

newly identified vulnerabilities would be beneficial. This could, in principle, be ac-

complished by increasing the number and diversity of expert vulnerability researchers

devoted to the vulnerability identification effort. This study primary used one researcher

extensively and a second one intermittently to identify and validate new vulnerabilities.

Neither researcher was expert in database vulnerability discovery. Further, even these

two experts were strongly constrained by time and availability. Consequently, there is

some reason to suspect that the estimates made in this case study for the total number

of misclassifed bugs have errored on the conservative side.

In addition, the vulnerability liklihood scoring process for bugs described in Sec-

77

tion 5.3.4 could likely be improved in several ways. Examination of Table 5.5 reveals

a bias towards UNIX-like systems and this is due to the professional expertise of the

authors: we simply know more about vulnerabilities affecting UNIX-like systems than,

for example, the Microsoft Windows family of operating systems. Getting an accurate

count of the number of bugs affecting UNIX-like operating systems versus other operat-

ing systems referenced in the MySQL bug database is complicated by the fact that the

field capturing affected operating system is free-form and user-specified, so it is difficult

to measure the effect of this sampling bias.

The text strings in Table 5.5 are used for static lexical matching and this has the

possibility of lexically divergent but semantically equivalent phrases for the same idea.

Because of its static nature, the bug scoring process is not resilient to the introduction of

new phrases for the same idea and the retirement of old phrases (neologism). Note how-

ever, that attempts were made to choose phrases commonly used to describe vulnerability

precursors over the time period of the study.

5.5.4 Related Work

The approach in this chapter is unique primarily because bug report databases were

used to narrow the search for bugs not (yet) classified as vulnerabilities. Most previous

work in the area of software vulnerability estimation has generally focused on the publicly

reported vulnerabilities in software: known through online vulnerability databases such

as the NVD or OSVDB.

For instance, Rescorla attempted unsuccessfully to fit the various statistical models

(linear and Goel-Okumoto software reliability model) to vulnerability data from what

is now the NVD [8]. He examined four operating systems: Windows NT, Solaris 2.5.1,

RedHat Linux 7.0, and FreeBSD 4.0.

Likewise, using data including publicly reported vulnerabilities, Alhazmi, et al. pro-

posed several statistical models for predicting vulnerability discovery: an S-shaped model,

time-based logistical model, and an effort-based model [14, 59, 15]. Their primary work

78

focuses on application software, specifically Microsoft Internet Information Server (IIS)

and the Apache HTTP server. In this one way, the work here is similar (this work also

focuses on application software not on the underlying operating system).

Ozment and Schechter [7] examined the OpenBSD operating system and defined the

term foundational vulnerabilities to describe those vulnerabilities present in the code base

that did not change over the course of the study. They found that the rate of vulnerability

reports in foundational code was decreasing over time (a potential contradiction with

Resorla [8]).

In other work, Ozment compiled a database of vulnerabilities in OpenBSD from var-

ious sources (NVD, Bugtraq, OSVDB, etc.) and attempted to apply software reliability

models to software security questions and had modest success in predictive accuracy [60].

However, his models were based on the rate of vulnerabilities identified and reported pub-

licly. Given the predicted number of misclassified bugs presented in this chapter, it is

not reasonable to assume that Ozment’s models reasonably describe the actual number

of vulnerabilities which have been discovered. Many may have been misclassified as not

being vulnerabilities.

In [19], it is argued that vulnerabilities have different properties than software defects

(at least during the first phase of a product’s existence). However, other research suggests

that many vulnerabilities do, in fact, show up as bug reports and are not classified as

vulnerabilities until some time later [6, 52]. Further, in this chapter, it is demonstrated

that a very significant portion of bug reports remain misclassified as not also being

vulnerabilities. Thus it may be that the software properties of many vulnerabilities are,

in general, similar to that of other software defects.

5.6 Conclusion

The estimation of the number of vulnerabilities in a software product is an important

factor for assessing its quality. Many previous attempts at estimation have relied on

publicly available vulnerability databases or software reliability models derived from these

79

databases. This work calls into question the quality of estimates based on this type of

information.

We conducted an experiment to determine if the number of publicly identified vul-

nerabilities was a good estimate of the total number of discovered vulnerabilities (in-

cluding those discovered bugs which have been misclassified as not being vulnerabilities).

The experimental results provide some indication that even with the conservative ap-

proach outlined in this chapter, the quantity of discovered vulnerabilities in software is

considerably higher than what previous work would estimate for the same code base.

Consequently, previous counts and estimates of vulnerabilities in a software product may

be seriously flawed, and may be inappropriate for use in risk comparisons between com-

peting software products.

Additionally, the results presented in this chapter provide evidence that classifying

bugs properly is a difficult task. Thus there is a need for both improved automated bug

classifiers and a potential need for a deeper understanding of the software properties of

vulnerabilities.

Future work will be to apply the approach described in this chapter to one or more

additional code bases to determine if the results hold. Other reseach groups are en-

couraged to join in this endeavor. Further, works has begun to apply computational

intelligence techniques to build a more robust bug classifier [52]. Eventually the hope

is to identify a large number of misclassified bugs, determine reasons for the misclas-

sifications, and to identify new software attributes which can be used for vulnerability

identification. The ultimate goal is to improve the security, and estimates of security, for

software products as early in their life cycles as possible.

Acknowledgment

The authors would like to thank John Matherly of Shodan for helping to gather the

number of affected machines.

80

CHAPTER 6

Conclusion

This thesis has examined several under-studied aspects of the software security vul-

nerability ecosystem. Chapter 3 examined whether changing the grace period offered

by vulnerability researchers to vendors of vulnerable products would influence the rate

at which patches are produced. We found that less than 10% of bugs have patches in

90 days or less, so it is reasonable to wonder whether vendors can actually meet this

deadline.

In Chapter 4, we defined two metrics median active vulnerabilities (MAV) and vul-

nerability free days (VFD) that can aid in the comparison between similar products

coming from two different vendors and also between differing products within a single

vendor. The metrics were studied using known data from various web browsers (across

vendors) and other software products (within vendor).

The hidden impact of vulnerabilities was examined in Chapter 5. This chapter

calls into question statistics based on known vulnerabilities. The bug database for the

MySQL database software was examined and a significant number of previously unknown

vulnerabilities were identified. Extrapolating from the proportions found, the expected

number of yet to be identified vulnerabilities dwarfs the number of known vulnerabilities.

Given the large difference between the two, it is hard to say that the known vulnerabilities

is representative for MySQL. The study only focused on one product, and future work

should attempt to duplicate the experiment on one or more products.

Software will continue to have vulnerabilities as long as it is designed and written

by humans. Systems are too complex to be modeled completely enough to ensure no

violations of the [explicit or implicit] security model are possible. There are possibly

metrics to compare given products, but research based on known vulnerabilities are

likely to be on a weak foundation.

81

REFERENCES

[1] D. P. Fidler, “Was stuxnet an act of war? decoding a cyberattack,” Security and
Privacy, vol. 9, no. 4, pp. 56–59, July–August 2011.

[2] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet dossier,” Symantec Security
Response, Tech. Rep., February 2011, version 1.4.

[3] S. Frei, D. Schatzmann, B. Plattner, and B. Trammel, “Modeling the
security ecosystem - the dynamics of (in)security,” in Workshop on the
Economics of Information Security WEIS, R. Anderson, Ed., Cambridge,
UK, June 2009, Accessed: January 21, 2013. [Online]. Available: http:
//www.techzoom.net/publications/security-ecosystem/

[4] I. V. Krsul, “Software vulnerability analysis,” Ph.D. dissertation, Purdue, May
1998, Accessed: January 21, 2013. [Online]. Available: http://www.krsul.org/ivan/
articles/main.pdf

[5] A. Ozment, “Vulnerability discovery and software security,” Ph.D. dissertation, Uni-
versity of Cambridge Computer Laboratory, 2007.

[6] J. Arnold, T. Abbott, N. Elhage, G. Thomas, and A. Kaseorg, “Security impact
ratings considered harmful,” in 12th workshop on Hot Topics in Operating Systems.
USENIX, May 2009.

[7] A. Ozment and S. E. Schechter, “Milk or wine: Does software security improve with
age?” in 15th USENIX Security Symposium. USENIX, July 2006, pp. 93–104.

[8] E. Rescorla, “Is finding security holes a good idea?” IEEE Security and Privacy,
vol. 3, no. 1, pp. 14–19, January 2005.

[9] Microsoft. “Evolution of the Microsoft SDL.” Accessed: January 21, 2013. [Online].
Available: http://www.microsoft.com/security/sdl/learn/evolution.aspx

[10] R. Telang and S. Wattal, “An empirical analysis of the impact of software vulner-
ability announcements on firm stock price,” IEEE Transactions on Software Engi-
neering, vol. 33, no. 8, pp. 544–557, June 2007.

[11] A. Arora, R. Telang, and H. Xu, “Optimal policy for software vulnerability disclo-
sure,” Management Science, vol. 54, no. 4, pp. 642–656, April 2008.

[12] A. Arora, A. Nandkumar, and R. Telang, “Does information security attack fre-
quency increase with vulnerability disclosure? an empirical analysis,” Information
Systems Frontiers, vol. 8, no. 5, pp. 350–362, December 2006.

http://www.techzoom.net/publications/security-ecosystem/
http://www.techzoom.net/publications/security-ecosystem/
http://www.krsul.org/ivan/articles/main.pdf
http://www.krsul.org/ivan/articles/main.pdf
http://www.microsoft.com/security/sdl/learn/evolution.aspx

82

[13] A. Arora, R. Krishnan, R. Telang, and Y. Yang, “An empirical analysis of software
vendors patching behavior: Impact of vulnerability disclosure,” Information Systems
Research, vol. 21, no. 1, pp. 115–132, March 2010.

[14] O. H. Alhazmi and Y. K. Malaiya, “Modeling the vulnerability discovery process,”
in International Symposium on Software Reliability Engineering. IEEE, December
2005.

[15] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and predicting
security vulnerabilities in software systems,” Computers Security, vol. 26, no. 3, pp.
219–228, 2007.

[16] A. Ozment, “Improving vulnerability discovery models: Problems with definitions
and assumptions,” in 3rd Workshop on Quality of Protection (QoP). ACM, October
2007.

[17] W. Kandek, “The laws of vulnerabilities 2.0,” in BlackHat, Las Vegas,
NV, USA, July 2009, Accessed: January 21, 2013. [Online]. Available:
https://www.qualys.com/research/vulnlaws/

[18] M. Acer and C. Jackson, “Critical vulnerability in browser security metrics,” in Web
2.0 Security and Privacy, ser. IEEE Symposium on Security and Privacy, Oakland,
CA, USA, May 2010.

[19] S. Clark, S. Frei, M. Blaze, and J. M. Smith, “Familiarity breeds contempt: the
honeymoon effect and the role of legacy code in zero-day vulnerabilities,” in Annual
Computer Security Applications Conference ACSAC, December 2010, pp. 251–260.

[20] G. Schryen, “Is open source security a myth?” Communications of the ACM, vol. 54,
no. 5, pp. 130–140, May 2011.

[21] S. Zhang, D. Caragea, and X. Ou, “An empirical study on using the national vul-
nerability database to predict software vulnerabilities,” in International Conference
on Database and Expert Systems, August 2011.

[22] S. Zhang, X. Ou, A. Singhal, and J. Homer, “An empirical study of a vulnerability
metric aggregation method,” in International Conference on Security and Manage-
ment, Las Vegas, NV, USA, July 2011.

[23] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a
reported bug,” in Proc. of the 7th IEEE Working Conf. on Mining Software Repos-
itories (MSR), May 2010, pp. 1–10.

[24] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing mining
algorithms for predicting the severity of a reported bug,” in Proc. of the 15th Euro-
pean Conf. on Software Maintenance and Reengineering (CSMR), March 2011, pp.
249–258.

https://www.qualys.com/research/vulnlaws/

83

[25] D. Cubranic and G. C. Murphy, “Automatic bug triage using text categorization,”
in Proc. of the 16th Int. Conf. on Software Engineering and Knowledge Engineering
(SEKE). KSI Press, June 2004, pp. 92–97.

[26] A. Austin and L. Williams, “One technique is not enough: A comparison of vulner-
ability discovery techniques,” in Proc. of the 2011 Int. Symp. on Empirical Software
Engineering and Measurement (ESEM), September 2011, pp. 97–106.

[27] W. M. Khoo, S. Aloteibi, R. Anderson, and M. Meeks, “Hunting for vulnerabilities
in large software: the OpenOffice suite,” Cambridge University, Tech. Rep., June
2010.

[28] P. Li and B. Cui, “A comparative study on software vulnerability static analysis
techniques and tools,” in Proc. of the IEEE Int. Conf. on Information Theory and
Information Security (ICITIS), December 2010, pp. 521–524.

[29] F. Yamaguchi, F. F. Lindner, and K. Rieck, “Vulnerability extrapolation: Assisted
discovery of vulnerabilities using machine learning,” in Proc. of the 5th USENIX
Workshop on Offensive Technologies (WOOT). USENIX, August 2011.

[30] D. Kester, M. Mwebesa, and J. S. Bradbury, “How good is static analysis at finding
concurrency bugs?” in Proc. of the 10th IEEE Int. Working Conf. on Source Code
Analysis and Manipulation (SCAM), September 2010, pp. 115–124.

[31] L. Torri, G. Fachini, L. Steinfeld, V. Camara, L. Carro, and É. Cota, “An evaluation
of free/open source static analysis tools applied to embedded software,” in Proc. of
the 11th Latin American Test Workshop (LATW), March 2010, pp. 1–6.

[32] M. Zitser, R. Lippmann, and T. Leek, “Testing static analysis tools using exploitable
buffer overflows from open source code,” in Proc. of the 12th Int. Symp. on Founda-
tions of Software Engineering (FSE). ACM SIGSOFT, November 2004, pp. 97–106.

[33] M. A. McQueen, J. L. Wright, and L. Wellman, “Are vulnerability disclosure dead-
lines justified?” in Security Measurements and Metrics (METRISEC), Banff, Al-
berta, Canada, September 2011.

[34] CERT Coordination Center. “CERT/CC vulnerability disclosure policy.” Accessed:
January 21, 2013. May 2008. [Online]. Available: http://www.cert.org/kb/
vul disclosure.html

[35] J. E. Dunn. IDG News. “’Serious’ Microsoft Office encryption flaw discovered.”
Accessed: January 21, 2013. January 2005. [Online]. Available: http:
//www.pcworld.com/article/119483/article.html

[36] Rapid7. “Vulnerability disclosure policy.” Accessed: January 21, 2013. June 2010.
[Online]. Available: http://www.rapid7.com/disclosure.jsp

http://www.cert.org/kb/vul_disclosure.html
http://www.cert.org/kb/vul_disclosure.html
http://www.pcworld.com/article/119483/article.html
http://www.pcworld.com/article/119483/article.html
http://www.rapid7.com/disclosure.jsp

84

[37] C. Evans, E. Grosse, N. Mehta, M. Moore, T. Ormandy, J. Tinnes, and
M. Zalewski. Google Security Team. “Rebooting responsible disclosure: a focus on
protecting end users.” Google Online Security Blog. Accessed: January 21, 2013.
July 2010. [Online]. Available: http://googleonlinesecurity.blogspot.com/2010/07/
rebooting-responsible-disclosure-focus.html

[38] A. Portnoy. Zero Day Initiative. “ZDI disclosure process changes.” Accessed:
January 21, 2013. Aug 2010. [Online]. Available: http://dvlabs.tippingpoint.com/
blog/2010/08/03/zdi-disclosure-changes

[39] K. McLaughlin. CRN Technology News. “HP’s zero day initiative
gives vendors patching deadline.” Accessed: January 21, 2013. Au-
gust 2010. [Online]. Available: http://www.crn.com/news/security/226500302/
hps-zero-day-initiative-gives-vendors-patching-deadline.htm

[40] S. Ragan. The Tech Herald. “The new era of vulnerability disclo-
sure – a brief chat with HD Moore.” Accessed: January 21, 2013.
August 2010. [Online]. Available: http://www.thetechherald.com/articles/
The-new-era-of-vulnerability-disclosure-a-brief-chat-with-HD-Moore/11047/

[41] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-based ex-
ploit generation is possible: Techniques and implications,” in IEEE Symposium on
Security and Privacy. IEEE Computer Society, May 2008, pp. 143–157.

[42] D. Veditz. “Bug 484320 - (CVE-2009-1044) XUL <tree> moveToEdgeShift
garbage-collection exploit (zdi-can-465).” Accessed: January 21, 2013. March 2009.
[Online]. Available: https://bugzilla.mozilla.org/show bug.cgi?id=484320

[43] J. L. Wright, M. McQueen, and L. Wellman, “Analyses of two end-user software
vulnerability exposure metrics,” in 7th International Conference on Availability,
Reliability, and Security (ARES). Prague, Czech Republic: IEEE, August 2012.

[44] J. L. Wright, M. A. McQueen, and L. Wellman, “Analyses of two end-user vulner-
ability metrics (extended version),” Information Security Technical Report, vol. 17,
no. 4, pp. 173–184, May 2013, Elsevier.

[45] DHS National Cyber Security Division. US-CERT. “National Vulnerability
Database Home.” Accessed: January 21, 2013. [Online]. Available: http:
//nvd.nist.gov/

[46] iDefense Vulnerability Contributor Program. “iDefense cyber intelligence,
threat intelligence and security – verisign.” Accessed: January 21, 2013.
[Online]. Available: http://www.verisigninc.com/en US/products-and-services/
network-intelligence-availability/idefense/public-vulnerability-reports/index.xhtml

[47] Zero Day Initiative. TippingPoint. “TippingPoint Zero Day Initiative.” Accessed:
January 21, 2013. [Online]. Available: http://www.zerodayinitiative.com

http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://googleonlinesecurity.blogspot.com/2010/07/rebooting-responsible-disclosure-focus.html
http://dvlabs.tippingpoint.com/blog/2010/08/03/zdi-disclosure-changes
http://dvlabs.tippingpoint.com/blog/2010/08/03/zdi-disclosure-changes
http://www.crn.com/news/security/226500302/hps-zero-day-initiative-gives-vendors-patching-deadline.htm
http://www.crn.com/news/security/226500302/hps-zero-day-initiative-gives-vendors-patching-deadline.htm
http://www.thetechherald.com/articles/The-new-era-of-vulnerability-disclosure-a-brief-chat-with-HD-Moore/11047/
http://www.thetechherald.com/articles/The-new-era-of-vulnerability-disclosure-a-brief-chat-with-HD-Moore/11047/
https://bugzilla.mozilla.org/show_bug.cgi?id=484320
http://nvd.nist.gov/
http://nvd.nist.gov/
http://www.verisigninc.com/en_US/products-and-services/network-intelligence-availability/idefense/public-vulnerability-reports/index.xhtml
http://www.verisigninc.com/en_US/products-and-services/network-intelligence-availability/idefense/public-vulnerability-reports/index.xhtml
http://www.zerodayinitiative.com

85

[48] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability analysis,” in
SIGCOMM Workshop on Large-Scale Attack Defense (LSAD). ACM, September
2006, pp. 131–138.

[49] Cenzic, Inc. “Cenzic web application security trends report q3/q4 2010.” Accessed:
January 25, 2012. 2010. [Online]. Available: http://www.cenzic.com/resources/
reg-not-required/trends/

[50] IBM X-Force. “2010 trend and risk report.” Accessed: January 21, 2013.
February 2010. [Online]. Available: http://www-935.ibm.com/services/us/iss/
xforce/trendreports/

[51] J. L. Wright, J. W. Larsen, and M. A. McQueen, “Estimating software vulnera-
bilities: A case study based on the misclassification of bugs in MySQL server,” in
International Conference on Availability, Reliability, and Security (ARES). Re-
gensburg, Germany: IEEE, September 2013, pp. 72–81.

[52] D. Wijayasekara, M. Manic, J. L. Wright, and M. A. McQueen, “Mining bug
databases for unidentified software vulnerabilities,” in International Conference on
Human System Interactions (HSI), Perth, Austrailia, June 2012.

[53] MITRE Corporation. “Common Vulnerabilities and Exposures (CVE).” Accessed:
January 21, 2013. November 2011. [Online]. Available: http://cve.mitre.org

[54] H. Shahriar and M. Zulkernine, “Classification of static analysis-based buffer over-
flow detectors,” in Proc. of the 4th Int. Conf. on Secure Software Integration and
Reliability Improvement Companion, June 2010, pp. 94–101.

[55] S. M. Kerner. Database Journal. “Oracle commits to MySQL
with InnoDB.” Accessed: January 21, 2013. April 2010. [Online].
Available: http://www.databasejournal.com/features/mysql/article.php/3876206/
Oracle-Commits-to-MySQL-with-InnoDB.htm

[56] Microsoft. “Microsoft exploitability index.” Accessed: January 21, 2013. October
2008. [Online]. Available: http://technet.microsoft.com/en-us/security/cc998259

[57] K. Johnson and M. Miller, “Exploiting the otherwise non-exploitable on Windows,”
Leviathan Security Group, Tech. Rep., May 2006, Accessed: January 21, 2013.
[Online]. Available: http://uninformed.org/?v=4&a=5&t=sumry

[58] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou, “Heap taichi: Exploiting mem-
ory allocation granularity in heap-spraying attacks,” in Annual Computer Security
Applications Conference (ASSAC ’10). ACM, 2010, pp. 327–336.

[59] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability assessment of systems
software,” in Reliability and Maintainability Symposium, January 2005, pp. 615–620.

http://www.cenzic.com/resources/reg-not-required/trends/
http://www.cenzic.com/resources/reg-not-required/trends/
http://www-935.ibm.com/services/us/iss/xforce/trendreports/
http://www-935.ibm.com/services/us/iss/xforce/trendreports/
http://cve.mitre.org
http://www.databasejournal.com/features/mysql/article.php/3876206/Oracle-Commits-to-MySQL-with-InnoDB.htm
http://www.databasejournal.com/features/mysql/article.php/3876206/Oracle-Commits-to-MySQL-with-InnoDB.htm
http://technet.microsoft.com/en-us/security/cc998259
http://uninformed.org/?v=4&a=5&t=sumry

86

[60] A. Ozment, “Software security growth modeling: Examining vulnerabilities with
reliability growth models,” in Quality of Protection: Security Measurements and
Metrics, ser. Advances in Information Security, D. Gollmann, F. Massacci, and
A. Yautsiukhin, Eds. Springer, 2006, vol. 23.

87

APPENDIX A

Identifiers of Sampled Bugs for Each Scoring Group

88

APPENDIX A

Identifiers of Sampled Bugs for Each Scoring Group

For each of the four MySQL server bug scoring groups, we sampled a subset of

the bug reports to undergo detailed analysis in order to determine if they were also

vulnerabilities. In this Appendix we provide, by scoring group, the bug identifiers of

each sampled bug (Tables A.1 through A.4). The bug identifier is used by the MySQL

software team to uniquely identify each bug.

We encourage other research teams to carefully evaluate each of these bug samples

and validate, or invalidate, our results. We further suggest that other research teams

perform the same scoring process we developed, do their own sampling, followed by

vulnerability identification. We will of course be interested in the results of these other

efforts, and would hope to find mechanisms for collaboration and sharing of intermediate

data in addition to results.

89

Table A.1. Group 0 (score ≤ 0) bugs examined.
bugid score bugid score bugid score bugid score bugid score

249 0 429 0 708 0 785 0 856 0
952 0 1010 0 1073 0 1076 0 1484 0

1879 0 1977 0 1993 0 2539 0 3089 0
3218 0 3446 0 3667 0 3852 0 3863 0
3925 0 4451 -20 4609 0 4752 0 4801 0
5059 0 5145 0 5248 0 5712 0 5811 0
5926 0 5985 0 6557 0 6600 0 6690 0
6932 0 7047 0 7170 -20 7223 0 7329 0
7443 0 7687 0 7873 0 7957 0 7996 0
8134 0 8357 0 8435 0 9650 0 9965 0

10083 0 10313 0 10537 0 10818 -50 10935 0
11017 0 11072 0 11549 0 11731 0 11774 0
11953 0 11997 0 12457 0 12501 0 12657 0
12702 0 12702 0 12778 0 12902 0 13059 0
13202 0 13370 -50 13499 0 13642 0 13845 0
14216 0 14543 0 14900 0 14906 -50 14953 -50
15068 0 15072 -50 15471 0 15599 0 15716 0
15745 0 16172 0 16179 0 16205 0 16215 0
16331 0 17020 0 17319 0 17894 0 18276 -20
18289 0 18347 0 18729 0 18859 0 19326 0
19421 0 19747 0 19861 0 19893 0 20074 0
20140 0 20214 0 20381 -50 21020 0 21088 0
21332 0 21487 0 21566 0 22457 0 23208 0
24002 0 24062 0 24302 0 24429 0 24532 -50
24663 0 24988 0 26287 0 26602 0 26613 0
27600 0 28166 0 28194 0 28571 0 28578 0
28788 0 28872 0 28940 0 29033 -50 29214 0
29579 0 29822 0 33613 0 34454 0 35146 0
35343 0 37133 0 40263 0 40737 0 41854 0
44923 -50 47318 0 47582 0 47902 0 48661 0
48691 0 49450 0 50412 -70 51468 0 52207 0
54645 0 54699 0 55686 0 56708 0 57564 0

90

Table A.2. Group 1 (0 < score ≤ 100) bugs examined.
bugid score bugid score bugid score bugid score bugid score

146 100 2490 100 2674 40 5435 70 6885 20
7981 100 9916 20 9949 100 10058 20 11226 20

13626 100 13673 100 15338 50 16470 20 16738 20
16739 20 17123 20 18037 100 19311 100 19626 50
20076 50 20823 100 23165 100 24482 100 25332 20
25908 100 28073 50 28421 100 29801 100 31214 50
31242 100 31916 20 34534 20 36156 20 36583 100
37408 20 38848 100 46321 20 46592 50 46782 20
47144 100 47280 20 47883 100 50457 20 50632 100
56281 100

Table A.3. Group 2 (0 < score ≤ 400) bugs examined.
bugid score bugid score bugid score bugid score bugid score
13090 200 13627 200 14086 270 15268 200 15924 200
16218 270 16298 180 16805 270 17001 270 17419 270
17535 270 17672 200 18649 180 19155 200 19210 180
19382 180 19727 270 20151 200 20258 270 20595 200
20979 200 21135 270 21651 170 21709 170 21851 200
21927 170 22244 170 22413 170 22440 170 22879 170
23075 170 23368 170 23506 170 23542 170 23944 170
24199 170 24211 170 24480 170 24502 170 27296 180
30562 180 31569 240 32431 240 33844 180 35272 180
36656 180 41733 240 42438 240 43827 320 44040 320
44886 320 51136 190 52711 190 55627 190 59111 190

Table A.4. Group 3 (score > 400) bugs examined.
bugid score bugid score bugid score bugid score bugid score

639 470 7289 500 10918 420 16550 500 19885 420
21658 420 21913 440 27752 470 28975 520 48319 420

91

APPENDIX B

Published Works

92

APPENDIX B

Published Works

What follows is a list of works published by this author starting from the most recent
and going back to the first. The focus is on academically published work.

Wright, J. L., Larsen, J. W., and McQueen, M. A., “Estimating software vulnerabilities:
A case study based on the misclassification of bugs in MySQL server,” in Interna-
tional Conference on Availability, Reliability, and Security (ARES). Regensburg,
Germany: IEEE, September 2013, pp. 72–81.

Software vulnerabilities are an important part of the modern software econ-
omy. Being able to accurately classify software defects as a vulnerability, or
not, allows developers and end users to expend appropriately more effort on
fixing those defects which have security implications. However, we demon-
strate in this paper that the expected number of misclassified bugs (those
not marked as also being vulnerabilities) may be quite high and thus human
efforts to classify bug reports as vulnerabilities appears to be quite ineffective.

Wright, J. L., McQueen, M., and Wellman, L., “Analyses of two end-user software vul-
nerability exposure metrics,” in 7th International Conference on Availability, Reli-
ability, and Security (ARES). Prague, Czech Republic: IEEE, August 2012.

Two metrics focused on end-user consumption are defined: Median Active
Vulnerabilities (MAV) and Vulnerability Free Days (VFD). The calculation,
use, and implications are explored in a case study involving the four most
popular web browsers (Apple Safari, Google Chrome, Microsoft Internet Ex-
plorer, and Mozilla Firefox) and two non-browser products (Apple QuickTime
and Microsoft Office).

Wright, J. L., McQueen, M. A., and Wellman, L., “Analyses of two end-user vulnerability
metrics (extended version),” Information Security Technical Report, vol. 17, no. 4,
pp. 173–184, May 2013, Elsevier.

This paper expands on the paper above and adds various analyses. Of partic-
ular note is the demonstration that the severity of vulnerabilities as measured
by CVSS score does not correlate to the lifetime (time between vendor no-
tification and release of patch). Further, it is demonstrated that for web
browsers, vulnerabilities bought by iDefense/ZDI are more severe than vul-
nerabilities found only in the National Vulnerability Database

Wijayasekara, D., Manic, M., Wright, J. L., and McQueen, M. A., “Mining bug databases
for unidentified software vulnerabilities,” in International Conference on Human
System Interactions (HSI), Perth, Austrailia, June 2012.

93

The importance of hidden impact bugs, bugs which are reported and only later
discovered to be vulnerabilities, is explored in this paper. This work expands
upon previous work and demonstrates that hidden impact bugs exist within
both the Linux kernel and the MySQL database server.

McQueen, M. A., Wright, J. L., and Wellman, L., “Are vulnerability disclosure deadlines
justified?” in Security Measurements and Metrics (METRISEC), Banff, Alberta,
Canada, September 2011.

Vulnerability research organizations Rapid7, Google Security team, and Zero
Day Initiative imposed grace periods for public disclosure of vulnerabilities.
The grace periods ranged from 45 to 182 days, after which disclosure might
occur with or without an effective mitigation from the affected software ven-
dor. At this time there is indirect evidence that the shorter grace periods of
45 and 60 days may not be practical. However, there is strong evidence that
the recently announced Zero Day Initiative grace period of 182 days yields
benefit in speeding up the patch creation process, and may be practical for
many software products.

McJunkin, T., Boring, R., McQueen, M. A., Shunn, L., Wright, J. L., Gertman, D.,
Linda, O., McCarty, K., and Manic, M., “Concept of operations for data fusion vi-
sualization,” in Advances in Safety, Reliability and Risk Management, ser. ESREL
2011, Berenguer, C., Grall, A., and Soares, C. G., Eds. CRC Press, September
2011, pp. 634–640.

Data fusion for process control involves the presentation of synthesized sensor
data in a manner that highlights the most important system states to an
operator. The design of a data fusion interface must strike a balance between
providing a process overview to the operator while still helping the operator
pinpoint anomalies as needed. With the inclusion of a predictor system in the
process control interface, additional design requirements must be considered,
including the need to convey uncertainty regarding the prediction and to
minimize nuisance alarms. This paper reviews these issues and establishes
a design process for data fusion interfaces centered on creating a concept of
operations as the basis for a design style guide.

Linda, O., Manic, M., Vollmer, T., and Wright, J. L., “Fuzzy logic based anomaly detec-
tion for embedded network security cyber sensor,” in IEEE Symposium Series on
Computational Intelligence. Paris, France: IEEE, April 2011, pp. 202–209.

Resiliency and security in critical infrastructure control systems in the modern
world of cyber terrorism constitute a relevant concern. Developing a network
security system specifically tailored to the requirements of such critical assets
is of a primary importance. This paper proposes a novel learning algorithm
for anomaly based network security cyber sensor together with its hardware
implementation. The presented learning algorithm constructs a fuzzy logic

94

rule base modeling the normal network behavior. Individual fuzzy rules are
extracted directly from the stream of incoming packets using an online cluster-
ing algorithm. This learning algorithm was specifically developed to comply
with the constrained computational requirements of low-cost embedded net-
work security cyber sensors. The performance of the system was evaluated
on a set of network data recorded from an experimental test-bed mimicking
the environment of a critical infrastructure control system.

Wright, J. L. and Manic, M., “Neural network architecture selection analysis with ap-
plication to cryptography location,” in International Joint Conference on Neural
Networks (IJCNN). Barcelona, Spain: IEEE, July 2010.

When training a neural network it is tempting to experiment with architec-
tures until a low total error is achieved. The danger in doing so is the creation
of a network that loses generality by over-learning the training data; lower
total error does not necessarily translate into a low total error in validation.
The resulting network may keenly detect the samples used to train it, without
being able to detect subtle variations in new data. In this paper, a method
is presented for choosing the best neural network architecture for a given
data set based on observation of its accuracy, precision, and mean square
error. The method relies on k-fold cross validation to evaluate each network
architecture k times to improve the reliability of the choice of the optimal
architecture. The need for four separate divisions of the data set is demon-
strated (testing, training, and validation, as normal, and an comparison set).
Instead of measuring simply the total error the resulting discrete measures of
accuracy, precision, false positive, and false negative are used. This method is
then applied to the problem of locating cryptographic algorithms in compiled
object code for two different CPU architectures to demonstrate the suitability
of the method.

Wright, J. L. and Manic, M., “The analysis of dimensionality reduction techniques in
cryptographic object code classification,” in Conference on Human Systems Inter-
actions (HSI). Rzeszow, Poland: IEEE, May 2010, pp. 157–162.

This paper compares the application of three different dimension reduction
techniques to the problem of classifying functions in object code form as being
cryptographic in nature or not. A simple classier is used to compare dimen-
sionality reduction via sorted covariance, principal component analysis, and
correlation-based feature subset selection. The analysis concentrates on the
classification accuracy as the number of dimensions is increased. It is demon-
strated that when discarding 90% of the measured dimensions, accuracy only
suffers by 1% for this problem. By discarding dimensions, computational in-
telligence techniques can be applied with a drastic reduction in algorithmic
complexity. The primary focus is on Intel IA32 instruction set, but analysis
shows consistent results on the Sun SPARC instruction set.

95

Wright, J. L. and Manic, M., “Neural network approach to locating cryptography in
object code,” in Internation Conference on Emerging Technologies and Factory
Automation (ETFA). Palma de Mallorca, Spain: IEEE, September 2009, pp. 1–4.

Finding and identifying cryptography is a growing concern in the malware
analysis community. In this paper, artificial neural networks are used to clas-
sify functional blocks from a disassembled program as being either cryptog-
raphy related or not. The resulting system, referred to as NNLC (Neural Net
for Locating Cryptography) is presented and results of applying this system
to various libraries are described.

Wright, J. L. and Manic, M., “Time synchonization in heirarchical TESLA wireless sensor
networks,” in Internation Symposium on Resilient Control Systems (ISRCS). Idaho
Falls, ID, USA: IEEE, 2009, pp. 36–39.

Time synchronization and event time correlation are important in wireless
sensor networks. In particular, time is used to create a sequence events or time
line to answer questions of cause and effect. Time is also used as a basis for
determining the freshness of received packets and the validity of cryptographic
certificates. This paper presents secure method of time synchronization and
event time correlation for TESLA-based hierarchical wireless sensor networks.
The method demonstrates that events in a TESLA network can be accurately
timestamped by adding only a few pieces of data to the existing protocol.

Keromytis, A. D., de Raadt, T., Wright, J. L., and Burnside, M., “Cryptography as
an operating system service: A case study,” Transactions on Computer Systems
(ToCS), vol. 24, no. 1, pp. 1–38, February 2006, ACM.

This is a revised and extended version of “The Design of the OpenBSD cryp-
tographic framework” conference paper (below). It adds several experiments
and analyses omitted from conference version.

Smith, J. M., Greenwald, M. B., Ioannidis, S., Keromytis, A. D., Laurie, B., Maughan,
D., Rahn, D., and Wright, J. L., “Experiences enhancing open source security in
the POSSE project,” in Global Information Technologies: Concepts, Methodologies,
Tools, and Applications, Tan, F. B., Ed. Idea Group Publishing, 2007, pp. 1587–
1598.

This is a reprint of the article below.

Smith, J. M., Greenwald, M. B., Ioannidis, S., Keromytis, A. D., Laurie, B., Maughan,
D., Rahn, D., and Wright, J. L., “Experiences enhancing open source security in
the POSSE project,” in Free/Open Source Development, Koch, S., Ed. Idea Group
Publishing, 2004, pp. 242–257.

96

This chapter reports on our experiences with POSSE, a project studying
“Portable Open Source Security Elements” as part of the larger DARPA
effort on Composable High Assurance Trusted Systems. We describe the
organization created to manage POSSE and the significant acceleration in
producing widely used secure software that has resulted. POSSEs two main
goals were, first, to increase security in open source systems and, second, to
more broadly disseminate security knowledge, “best practices,” and working
code that reflects these practices. POSSE achieved these goals through careful
study of systems (“audit”) and starting from a well-positioned technology
base (OpenBSD). We hope to illustrate the advantages of applying OpenBSD-
style methodology to secure, open-source projects, and the pitfalls of melding
multiple open-source efforts in a single project.

Keromytis, A. D., Wright, J. L., and de Raadt, T., “The design of the OpenBSD crypto-
graphic framework,” in USENIX Annual Technical Conference. San Antonio, TX,
USA: USENIX, June 2003, pp. 181–196.

Cryptographic transformations are a fundamental building block in many se-
curity applications and protocols. To improve performance, several vendors
market hardware accelerator cards. However, until now no operating system
provided a mechanism that allowed both uniform and efficient use of this new
type of resource. We present the OpenBSD Cryptographic Framework (OCF),
a service virtualization layer implemented inside the kernel, that provides uni-
form access to accelerator functionality by hiding card-specific details behind
a carefully-designed API. We evaluate the impact of the OCF in a variety of
benchmarks, measuring overall system performance, application throughput
and latency, and aggregate throughput when multiple applications make use
of it.

Keromytis, A. D. and Wright, J. L., “Transparent network security policy enforcement,”
in USENIX Annual Technical Conference, Freenix track. San Diego, CA, USA:
USENIX, June 2000, pp. 215–226.

Recent work in the area of network security, such as IPsec, provides mecha-
nisms for securing the traffic between any two interconnected hosts. However,
it is not always possible, economical, or even practi- cal from an administra-
tion and operational point of view to upgrade the software and configuration
of all the nodes in a network to support such security protocols. This pa-
per describes the architecture and implementation of a Layer-2 (link layer)
bridge with extensions for offering Layer-3 security services. We extend the
OpenBSD ethernet bridge to perform simple IP packet filtering and IPsec
processing for incoming and outgoing packets on behalf of a protected node,
completely transparently to both the protected and the remote communica-
tion endpoint. The same mechanism may be used to construct “virtual local
area networks,” by establishing IPsec tunnels between OpenBSD bridges con-
nected geographically separated LANs. As our system operates in the link

97

layer, there is no need for software or configuration changes in the protected
nodes.

98

APPENDIX C

Copyright Information

99

APPENDIX C

Copyright Information

Most of the papers used in the creation of this thesis are copyright © IEEE. The
use of papers copyright information for each paper is included on the following pages.

100

Title: Are Vulnerability Disclosure Deadlines Justified?
Conference Proceedings: 2011 Third International Workshop on Security Measurements
and Metrics (Metrisec)
Author: McQueen, M.; Wright, J.L.; Wellman, L.
Publisher: IEEE
Date: 21-21 Sept. 2011
Copyright © 2011, IEEE

Thesis / Dissertation Reuse
The IEEE does not require individuals working on a thesis to obtain a formal reuse

license, however, you may print out this statement to be used as a permission grant:
Requirements to be followed when using any portion (e.g., figure, graph, table, or

textual material) of an IEEE copyrighted paper in a thesis:

1. In the case of textual material (e.g., using short quotes or referring to the work
within these papers) users must give full credit to the original source (author,
paper, publication) followed by the IEEE copyright line © 2011 IEEE.

2. In the case of illustrations or tabular material, we require that the copyright line ©
[Year of original publication] IEEE appear prominently with each reprinted figure
and/or table.

3. If a substantial portion of the original paper is to be used, and if you are not the
senior author, also obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a
thesis:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: © [year of original publication] IEEE. Reprinted, with permission, from
[author names, paper title, IEEE publication title, and month/year of publication]

2. Only the accepted version of an IEEE copyrighted paper can be used when posting
the paper or your thesis on-line.

3. In placing the thesis on the author’s university website, please display the following
message in a prominent place on the website:

In reference to IEEE copyrighted material which is used with permis-
sion in this thesis, the IEEE does not endorse any of [university/ed-
ucational entity’s name goes here]’s products or services. Internal or
personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promo-
tional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

101

If applicable, University Microfilms and/or ProQuest Library, or the Archives of
Canada may supply single copies of the dissertation.

Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy
statement.

102

Title: Analyses of Two End-User Software Vulnerability Exposure Metrics
Conference Proceedings: 2012 Seventh International Conference on Availability, Relia-
bility and Security (ARES)
Author: Wright, J.L.; McQueen, M.; Wellman, L.
Publisher: IEEE
Date: 20-24 Aug. 2012
Copyright © 2012, IEEE

Thesis / Dissertation Reuse
The IEEE does not require individuals working on a thesis to obtain a formal reuse

license, however, you may print out this statement to be used as a permission grant:
Requirements to be followed when using any portion (e.g., figure, graph, table, or

textual material) of an IEEE copyrighted paper in a thesis:

1. In the case of textual material (e.g., using short quotes or referring to the work
within these papers) users must give full credit to the original source (author,
paper, publication) followed by the IEEE copyright line © 2011 IEEE.

2. In the case of illustrations or tabular material, we require that the copyright line ©
[Year of original publication] IEEE appear prominently with each reprinted figure
and/or table.

3. If a substantial portion of the original paper is to be used, and if you are not the
senior author, also obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a
thesis:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: © [year of original publication] IEEE. Reprinted, with permission, from
[author names, paper title, IEEE publication title, and month/year of publication]

2. Only the accepted version of an IEEE copyrighted paper can be used when posting
the paper or your thesis on-line.

3. In placing the thesis on the author’s university website, please display the following
message in a prominent place on the website:

In reference to IEEE copyrighted material which is used with permis-
sion in this thesis, the IEEE does not endorse any of [university/ed-
ucational entity’s name goes here]’s products or services. Internal or
personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promo-
tional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

103

If applicable, University Microfilms and/or ProQuest Library, or the Archives of
Canada may supply single copies of the dissertation.

Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy
statement.

104

Title: Analyses of Two End-User Software Vulnerability Exposure Metrics (extended
version)
Information Security Technical Report, May 2013, Volume 17, Number 4.
Author: Wright, J.L.; McQueen, M.; Wellman, L.
Publisher: Elsevier
Date: May 2013
Copyright © 2013, Elsevier Ltd.

Thesis / Dissertation Reuse
According to Elsevier’s Author Rights and Responsibilities1, Elsevier does not re-

quire individuals working on a thesis to obtain a formal reuse license as long as full
acknowledgement (above, and also in each relevant chapter) of the final version is made.

1http://www.elsevier.com/journal-authors/author-rights-and-responsibilities#rights,
Last Accessed: July 14, 2013.

http://www.elsevier.com/journal-authors/author-rights-and-responsibilities#rights

105

Title: Mining Bug Databases for Unidentified Software Vulnerabilities
Conference Proceedings: 2012 5th International Conference on Human System Interac-
tions (HSI)
Author: Wijayasekara, Dumidu; Manic, Milos; Wright, Jason L.; McQueen, Miles
Publisher: IEEE
Date: 6-8 June 2012
Copyright © 2012, IEEE

Thesis / Dissertation Reuse
The IEEE does not require individuals working on a thesis to obtain a formal reuse

license, however, you may print out this statement to be used as a permission grant:
Requirements to be followed when using any portion (e.g., figure, graph, table, or

textual material) of an IEEE copyrighted paper in a thesis:

1. In the case of textual material (e.g., using short quotes or referring to the work
within these papers) users must give full credit to the original source (author,
paper, publication) followed by the IEEE copyright line © 2011 IEEE.

2. In the case of illustrations or tabular material, we require that the copyright line ©
[Year of original publication] IEEE appear prominently with each reprinted figure
and/or table.

3. If a substantial portion of the original paper is to be used, and if you are not the
senior author, also obtain the senior authors approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a
thesis:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: © [year of original publication] IEEE. Reprinted, with permission, from
[author names, paper title, IEEE publication title, and month/year of publication]

2. Only the accepted version of an IEEE copyrighted paper can be used when posting
the paper or your thesis on-line.

3. In placing the thesis on the author’s university website, please display the following
message in a prominent place on the website:

In reference to IEEE copyrighted material which is used with permis-
sion in this thesis, the IEEE does not endorse any of [university/ed-
ucational entity’s name goes here]’s products or services. Internal or
personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promo-
tional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

106

If applicable, University Microfilms and/or ProQuest Library, or the Archives of
Canada may supply single copies of the dissertation.

Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy
statement.

107

Title: Estimating Software Vulnerabilities: A Case Study Based on the Misclassification
of Bugs in MySQL Server
Conference Proceedings: 2013 Eighth International Conference on Availability, Reliabil-
ity and Security (ARES)
Author: Wright, J.L.; Larsen, J.W.; McQueen, M.
Publisher: IEEE
Date: 2-6 Sep. 2013
Copyright © 2013, IEEE

Thesis / Dissertation Reuse
The IEEE does not require individuals working on a thesis to obtain a formal reuse

license, however, you may print out this statement to be used as a permission grant:
Requirements to be followed when using any portion (e.g., figure, graph, table, or

textual material) of an IEEE copyrighted paper in a thesis:

1. In the case of textual material (e.g., using short quotes or referring to the work
within these papers) users must give full credit to the original source (author,
paper, publication) followed by the IEEE copyright line © 2011 IEEE.

2. In the case of illustrations or tabular material, we require that the copyright line ©
[Year of original publication] IEEE appear prominently with each reprinted figure
and/or table.

3. If a substantial portion of the original paper is to be used, and if you are not the
senior author, also obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a
thesis:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: © [year of original publication] IEEE. Reprinted, with permission, from
[author names, paper title, IEEE publication title, and month/year of publication]

2. Only the accepted version of an IEEE copyrighted paper can be used when posting
the paper or your thesis on-line.

3. In placing the thesis on the author’s university website, please display the following
message in a prominent place on the website:

In reference to IEEE copyrighted material which is used with permis-
sion in this thesis, the IEEE does not endorse any of [university/ed-
ucational entity’s name goes here]’s products or services. Internal or
personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promo-
tional purposes or for creating new collective works for resale or redistri-
bution, please go to http://www.ieee.org/publications_standards/

http://www.ieee.org/publications_standards/publications/rights/rights_link.html

108

publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of
Canada may supply single copies of the dissertation.

Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy
statement.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	Introduction
	Background
	Software Bugs and Vulnerabilities
	Vulnerability Stakeholders
	Software Vulnerability Disclosure
	Related Work

	Justification of Vulnerability Deadlines
	Introduction
	Overview of Vulnerability Disclosure
	Grace Periods Compared to Vulnerability Lifespans
	Did Vendors Speed Up Their Patch Creation
	Conclusion

	Analysis of Two End-User Vulnerability Metrics
	Introduction
	Two End-User Exposure Metrics
	Metrics Case Study
	Discussion
	Conclusion

	Estimating Software Vulnerabilities
	Introduction
	Hidden Impact Bugs
	Experimental Goals and Setup
	Experimental Results
	Discussion
	Conclusion

	Conclusion
	REFERENCES
	Identifiers of Sampled Bugs for Each Scoring Group
	Published Works
	Copyright Information

